
JPL Publication 86-24 '

SWITCH Users' Manual

Artificial Intelligence Group

H. Porta

(E A S A - C R - 1 8 1 3 2 1) SBXITCH &SEE'S t !A IJUU (Jet H87-21376
P r o p u i s i c n Laf.) 130 F A v a i l : h T I S BC
AL7/MF A01 C S C l 128

Unclas
63/66 0097899

February 1, 1987 I

m
National Aeronautics and Space Administration

Jet Propulsion Laboratory
California Institute of Technology

i Pasadena, California

JPL Publication 86-24

SWITCH Users’ Manual

Artificial Intelligence Group

H. Porta

February 1, 1987

NASA
National Aeronautics and Space Administration

Jet Propulsion Laboratory
California Institute of Technology
Pasadena, California

The research described in this publication was carried out by the Jet Propulsion
Laboratory, California Institute of Technology, and was sponsored by the
National Aeronautics and Space Administration (NASA Task RE-159).

Reference to any specific commercial product, process, o r service by trade name
o r manufacturer does not necessarily constitute an endorsement by the United
States Government, the sponsor, or the Jet Propulsion Laboratory, California
Institute of Technology.

ABSTRACT

The planning program, SWITCH, and its surrounding changed-goal-replanning
program, Runaround, are described. The evolution of SWITCH and Runaround from
an earlier planner, DEVISER, is recounted. SWTICH's plan representation, and
its process of building a plan by backward chaining with strict chronological
backtracking, are described.
provided, as are narrative guides for installing the program, running it, and
interacting with it while it is running.
documented. For the sake of completeness, a narrative guide to the
experimental discrepancy-replanning feature is provided.
knowledge base files for a blocksworld domain, and a DRIBBLE file illustrating
the output from, and user interaction with, the program in that domain.

A guide for writing knowledge base files is

Some utility functions are

Appendices contain

iii

ACKNOWLEDGMENTS

The author acknowledges the assistance of Mark James for his translation
of a significant portion of the system from Interlisp to Symbolics Zetalisp.
David Atkinson is acknowledged for his origination of the storage mechanisms
which allow reuse of "used" data structures. Special thanks are due to
Dr. Steven Vere. His planner, DEVISER, was the model from which this planner,
SWITCH, was created. Appreciation is also extended to Eve Cohen, whose many
contributions to another version of Dr. Vere's DEVISER endure in this program
as "user friendly" features of SWITCH.

This program presents the results of one phase of research carried out
at the Jet Propulsion Laboratory, California Institute of Technology, and
sponsored by the National Aeronautics and Space Administration under Contract
NO. NAS-918.

iv

CONTENTS

I . INTRODUCTION AND HISTORICAL NOTES 1-1

I1 . OUTLINE OF RUNAROUND AND SWITCH 2-1

I11 . KNOWLEDGE BASE LANGUAGE . 3-1

A . CONJUNCTION . 3-1

B . DISJUNCTION . 3-2

C . IMPLICATION . 3-2

D . QUANTIFICATION . 3-2

E . FUNCTIONS . 3-3

F . INTENSIVES AND EXTENSIVES 3-4

G . ASSIGNMENT . 3-6

IV . PRODUCTIONS AND SCHEDULED EVENTS
A . PRODUCTION TYPES

1 . Action
2 . Event
3 . ForwardEvent
4 . Inference

B . PRODUCTION PSEUDO-TYPE: SCHEDULED EVENT . . .
C . PRODUCTIONS THAT ARE NOT IN THE KNOWLEDGE BASE

D . INTENSIVES
1 . *Goal
2 . Consume
3 . Userconsent
4 . Cwgeq

.

.

.

.

.

.

.

.

.

.

.

.

.

4-1

4-7

4-7

4-8

4-8

4-9

4-9

4-10

4-10

4-10

4-11

4-11

4-12

V

5 . *Constant .
6 . *Ask .

E . VALUEFROMQUEUE .
F . ADVICE .
G . DESPERATION. PRIORITIES. AND URGENCY
He *GOAL ASSERTIONS e a

I . NONCONSUMABLE RESOURCES. OR CONSERVED RESOURCES
J . THE REST OF THE PRODUCTIONS FILE

1 . Consumable Resources
2 . Functions .
3 . Measurable Relations
4 . NCRUsers (NonConsumable Resource Users)
5 . NextPass .
6 . Nonconsumable Resources or Conserved Resources
7 . OnName .
8 . Precondition Priorities
9 . PROG Variables .
10 . Time Parameters
11 . Typed Variables
12 . Wipeout .

K . THE SCHEDULED EVENTS FILE

4-1 2

4-13

4-14

4-15

4-16

4-1 7

4-18

4-24

4-25

4-25

4-25

4-26

4-26

4-27

4-28

4-28

4-28

4-29

4-29

4-30

4-30

V . THEPROBLEMFILE . 5-1

A . GOALS . 5-1

B . INITIAL STATE . 5-3

C . NEXTPASS . 5-3

D . WISHES . 5-3

vi

VI . THE DOMAIN FUNCTIONS FILE . 6-1

VI1 . INSTALLING AND SETTING UP THE SYSTEM 7-1
VI11 . RUNNING THE SYSTEM . 8-1

A . IN RUNAROUND BEFORE THE PLANNER 8-1
B . INTHE PLANNER . 8-4

1 . Verbose Output? 8-4
2 . DesperationIndex 8-4
3 . How Shall I Handle SkipIt Alternatives? 8-4
4 . Periodic Pauses in Display 8-5
5 . Asking About SkipIt Alternatives 8-5
6 . Major Goal Check 8-6
7 . Save the Plan on Disk for Fragments? 8-8
8 . Plot the Flowchart? 8-8
9 . Print the Flowchart? 8-9
10 . Save this Plan f o r Replanning. and Save

Predictions for the Execution Monitor? 8-9
11 . Try for Another Solution? 8-9

C . IN RUNAROUND BETWEEN CALLS TO THE PLANNER 8-9
1 . Choosing Among Multiple Saved Plans 8-10
2 . In Case No Plans Were Saved 8-10
3 . Sending Predictions 8-11
4 . Commanding Replanning 8-11
5 . Any Discrepancies? 8-12
6 . Edit. Forget It. Print. Quit. or Trust Me? 8-12
7 . Now Here's a LISP BREAK 8-16

D . GETTING OUT OF RUNAROUND 8-16

vii

IX . EFFECTS OF RUNAROUND AND SWITCH ON THE LISP ENVIRONMENT 9-1
X . CLEANING UP AFTER RUNAROUND 10-1

XI . UTILITIES . 11-1

A . THE EDITOR INTERFACE: editv 11-1
B . COPYING HORRIBLE STRUCTURES: hcopyall . . e . . e 11-2

C . INSERTING READLINE INPUT INTO DRIBBLE
FILES: dribble-readline 11-2

D . VECTOR ARITHMETIC: cwgeq. vdifference.
minus. vplus. vsum . 11-3

XI1 . UNSUPPORTED FEATURE: DISCREPANCY REPLANNING
A . IN RUNAROUND BETWEEN CALLS TO THE PEANNER

1 . Any Discrepancies?
2 . Describing Discrepancies to the Program
3 . Function-Value Discrepancies
4 . Early Discrepancies
5 . Late Discrepancies
6 . Ceased Discrepancies
7 . Predict Discrepancies
8 . Start Times of Next Plan
9 . Edit. Forget It. Print. Quit. or Trust Me?
10 . Discrepancy Interference With In-Progress

and Irrevocable Activities
11 . Discrepancy Effects on New Initial State
12 . Discrepancies After Initial State
13 . Now Here's a LISP BREAK

B . DRFLAG. AND ACTIONS AFTER REALSTARTIME

12-1

12-2

12-2

12-3

12-4

12-5

12-5

12-6

12-6

12-6

12-7

12-7

12-8

12-1 2

12-12

12-13

i

I

viii

XIII. REFERENCES . 13-1

APPENDICES e e . A-1

A. PRODUCTIONS FILE . A-2

B. PROBLEM FILE . B-1
C. DRIBBLEd OUTPUT . C - 1

ix

SECTION I

INTRODUCTION AND HISTORICAL NOTES

The planning-and-replanning system described herein is the interim
product of the work of many at JPL over the past several years. The original
planner, DEVISER, was written by Dr. Steven Vere (Reference 1). In 1982, the
present author copied a version of DEVISER and began to modify it into SWITCH,
first improving its ability to account for nonconsumable resources and schedule
the "switching" on and off of appliances that use them. The vector arithmetic
functions were written for this purpose. At about the same time, Eve Cohen
was making a "user-friendly" version of DEVISER.
which survive in SWITCH,'include: (1) the input parser that, among other
things, keeps track of arities of relations in the knowledge base language and
warns the user of apparent inconsistencies therein; (2) DesperationIndex,
which permits the user and knowledge base designer to specify situations in
which the planner is allowed to ignore some of its rules' preconditions; and
(3) MajorGoalCheck, which permits the user to interrupt the planner and change
the goals during planning if, for instance, it becomes evident to the user
that the planner will not find a solution to the present set of goals, but
might find a solution if one goal were removed.

Features that she added,

Since the nonconsumable-resource-scheduling ability was added to SWITCH,
the other major innovation was the incorporation of SWITCH into a
changed-goal-replanning loop. This system allows SWITCH to replan to achieve
different goals, when the goal changes arise during execution of a plan that
SWITCH previously generated to achieve a no-longer-appropriate set of goals
(Reference 2). The editor interface, editv, and the horrible structure
copier, hcopyall, were written for the replanning system. Other, less
momentous modifications to the planner since the addition of nonconsumable-
resource scheduling include: (1) the flexible Equalsign, destructuring
assignments, and queued assignments; (2) automatic and inLeracLive
goal-skipping; (3) priority declarations on individual goals and goal
packages, and exact and Opposite priority comparisons; (4) NextPass; and
(5) PROG-like binding of variables within the planner.
features are described in more detail later in this manual.

The above-mentioned

Mark James did a significant portion of translating the system from
Interlisp to Symbolics Zetalisp. He wrote the record package that allowed us
to keep our Interlisp/CLISP "fetch" and "replace" statements in the source
code, and several other utilities that define functions equivalent to certain
Interlisp functions that do not naturally exist in Symbolics Zetalisp.

For a related expert system, David Atkinson originated the storage
mechanisms that save "used" data structures for reuse. These mechanisms have
been adapted to work with the planner.

Dr. Vere has continued to make his own independent modifications to
DEVISER (References 3 and 4). Those are not included in the SWITCH planning
and replanning system.

1-1

SECTION I1

OUTLINE OF RUNAROUND AND SWITCH

Runaround is a planning-and-replanning program incorporating the
planner, SWITCH (a near relative of DEVISER), and a replanning input generator
in a loop.
the scenario for its actual use is as follows: A user calls it to make a plan
to achieve certain goals, and if SWITCH succeeds in making a plan, the user
executes the plan (or sends it out to other agents to be executed). At some
time after the start of plan execution, the user realizes that he/she has some
goals that he/she did not input to the planner at the time the original plan
was constructed, or there is some other change to be made to the set of goals
that was provided to the planner.
replanning input generator makes a new set of input to the planner. As much
of the new input generation as possible is done automatically; the system
needs to interact with the user to obtain the changes to the goals. The
planner is called again with the new input to make a new plan, picking up at
some point of partial execution of the old plan and continuing so as to
achieve the new set of goals.
the user executes that, and if the user later becomes aware of still more
changes in the goals, replanning may be called for again as often as needed .

(within the limits of the machine's memory).

As of this point in time it has been run only experimentally, but

The user calls for replanning. The

If the planner succeeds in making the new plan,

It is always assumed that the knowledge base originally given to the
planner accurately describes the initial state of the world (or at least the
relevant features of the relevant part of the world), the changes over time to
the state of the world that are beyond the planner's control, and the
capabilities of the agents that will execute the plan. It is also assumed
that the agents will actually carry out the steps of each plan produced by the

violated (i.e., in case discrepancies appear between the plan's predictions
and the observed state of the world) is included in the system, but it is
experimental and not guaranteed. For more details, see UNSUPPORTED FEATURE:
DISCREPANCY REPLANNING, Section XI1 of this report.

-l--oac Crrma nnda that 4 - t n a m n 1 . r 4 n n a n a thana anetqmnt ;nnr svn .. .

The planner, SWITCH, works as follows: It starts by reading its input,
which consists of several parts: (1) descriptions of the initial state of the
world, and of the scheduled events, which are expected changes in the state of
the world beyond the planner's control; (2) descriptions of the goals that the
planner is trying to plan to achieve; and (3) descriptions of the capabilities
of the agent or agents who will carry out the plan, i.e., the changes in the
state of the worl& that are under the planner's control. It reads this input
from text files of s-expressions, and stores the s-expressions in fields of
data structures of types named LiteralTray, Node, and Production. (It also
loads an optional file of auxiliary functions, which are usually defined so as
to perform computations relevant to the domain for which the plan is to be
made. This file is loaded before any of the other input is processed.)

The first files read by the program contain the s-expressions which will
become Productions. The Productions contain representations of the agents'
capabilities and of the expected changes that are beyond the planner's control.

2-1

A Production describing an action that the agents can perform contains, among
other things, a list of the effects of the action and a list of the
preconditions that must be true while the action is being performed.

1

A LiteralTray is a structure for storing a predicate which represents a
statement about the state of the world. A Node contains a Production in one
of its fields, and it usually contains LiteralTrays and lists of LiteralTrays
in other fields. The presence of a Node in the final plan signifies that the
Production of that Node will occur or be performed, and that occurrence or
performance will achieve the state of the world described by the LiteralTrays
in the Node's Assertions field. A Node also contains a Window field, in which
there is a LiteralTray containing a description of the time interval during
which the activity described by the Node can or must begin.
includes a Duration field, containing a LiteralTray describing the length of
time that the activity takes to execute.

A Node also

Each scheduled event is entered in a Node in the initial partial plan,
with the event as the corresponding Node's Production, and,its effects as the
Node's Assertions.

The last input file contains the descriptions of the goals and the initial
state. The statements that describe the initial state are inserted into
LiteralTrays which are then made the Assertions of a special node called the
StartNode. Initially, each input goal statement is stored in a LiteralTray which
is, in turn, placed into the Assertions field of a "blank node." A blank node
contains the Blank Production, which does not correspond to a way to achieve any
statements. The task of the planner is to change all blank nodes into nodes of
other types that do describe how their assertions will be achieved.

A phantom node, in which the Production is the Phantom Production,
signifies that no action is necessary to achieve its assertion. The planner can
change a blank node to a phantom in two ways.
matches (upon instantiation of variables consistent with some constraints) an
assertion in another node that is not blank, the planner may "tie in" the blank
node to the other node, converting the blank node into a phantom. This
corresponds to recognizing that the assertion is already established by the
other node. A blank node in which the assertion is the negation of an assertion
of which the positive form does not appear in the plan may be changed to a
phantom without being tied in anywhere. The negative assertion is assumed to be
true because it is not contradicted. This corresponds to the planner making a
closed-world assumption: "The negation of this condition appears as a goal or
subgoal. Therefore, if this condition held, it would be important that I knew
it, so the knowledge base designer would have told me it held. The knowledge
base designer didn't tell me it holds, therefore it doesn't.''

If the blank node's assertion

The planner may change a blank node into a non-blank, non-phantom node
by "expanding" the blank node with a Production. It uses a Production that
contains the blank node's assertion, or a predicate that matches it after a
suitable instantiation of variables, among its effects. All of the effects of
the Production become part of the Assertions field of the newly-expanded node,
signifying that they will be true when the activity described by the Production
in the node is executed. The effect corresponding to the blank node's asser-
tion is the intended effect, and the other effects, if any, are side effects.
Each precondition of the Production is entered into a new blank node, thus

2-2

becoming a subgoal.
new blank nodes, by expanding.
corresponds to decreeing that the action described by the Production will be
performed to achieve the blank node's goal or subgoal.
for the preconditions corresponds to realizing that the preconditions will
have to be established to allow the Production's execution.

The planner unblanks one node, but probably adds several
Expanding a blank node with a Production

Adding new blank nodes

The planner schedules actions to be executed in parallel as much as
possible. An action that requires preconditions must be executed after the
actions that achieve the preconditions. Also, if two assertions that
contradict each other appear in the plan, their nodes are placed in sequence
so that the action establishing one will be executed after all actions that
depend on, and the action establishing, the other. When nodes are ordered,
their Windows are adjusted so that no node has a Window that would allow it to
begin before a node that is supposed to be before it could possibly finish. A
node that asserts a positive predicate might be ordered in time before a
phantom node that holds the negation of that predicate and is not tied in
anywhere, as described two paragraphs ago.
turned back into a blank and some tie-in or expansion must be found for it.

When this happens, the phantom is

The planner works by depth-first search with strict chronological
backtracking. At each stage in construction of the plan, the planner has a
tentative partial plan. If the partial plan is not complete, the planner
computes alternative changes to the tentative partial plan, stores all but thet
first for possible future use, and tries to make the first one, storing
commands to undo it. (At each step, the alternatives are all of the same
general type: all alternative ways to tie in a given blank node, all
alternative ways to expand a given blank node, all alternative ways to resolve
a given conflict by ordering two nodes, etc.) The computation of alternatives
screens out some alternatives, but not all, that will quickly be seen not to
work; so the first change may "abort" after it is partially made. In that case
the i i n r l n i n m rnmanrlc w n i l l r l he e v a l i i a t m r l r i p h t RWRV. anti another alternative
would be tried (that may itself abort, etc.). Reasons for aborting include
violation of constraints by attempted instantiations of variables, and
incompatibility of windows of nodes under attempted orderings.

If all of the alternatives abort (including the possibility that there
were no alternatives in the first place), previous undoing commands are
evaluated to return to an earlier tentative partial plan and to the
alternatives for changes remaining to be made to that partial plan.
the alternatives runs without aborting, it has made a change to the tentative
partial plan. If the new result is not a complete plan, the planner computes
alternative changes to make to it. If it is a complete plan, the planner
announces the fact and asks the user, "Try for another solution?", among other
things. (See Section VI11 for a more complete description of user
interaction.) If the answer is affirmative, the planner executes the most
recent undoing commands to return to a previous tentative partial plan, and
tries the next alternative change from that state. If the answer is negative,
the planner stops planning.

If one of

A complete plan, as constructed by the planner, consists of a graph of
nodes, in which each nontrivial node contains an action that the agents must
execute, or an event that will happen. The Window of the node will have been

2-3

shrunk to a single instant, so that the node specifies exactly when the
activity is supposed to begin.
field a list of statements about the world that should be true when its
corresponding activity finishes.

Also, each node contains in its Assertions

2-4

SECTION I11

KNOWLEDGE BASE LANGUAGE

The state of the world is described in a language of Lisp s-expressions
that correspond to atomic formulas and negated atomic formulas of predicate
calculus with object variables, with certain limited kinds of quantification,
conjunction, disjunction, implication, and functions. The planner and
replanning input generator expect the names of relations to be Lisp symbols.
Some symbols that might be relation names are treated specially: See
(1) Intensives and Extensives in this section; (2) Production Pseudo-Type:
Scheduled Event; ValueFromQueue; Advice; and Desperation, Priorities, and
Urgency under PRODUCTIONS AND SCHE3ULED EVENTS, Section IV; (3) Initial
state under TEE PROBLEM FILE, Section V; (4) In Runaround between Call6 to
the Planner under RUNNING TEE SYSTEM, Section VXXI; and (5) UNSUPPORTED
FEATURE: DISCREPANCY REPLANNING, Section XII. An atomic formula is a list in
which the car (first element) is a relation name and the cdr (list of the
rest of the elements) is the list of arguments to the relation, some of which
may, themselves, be lists. The arguments may be constants or variables; if
some argument is a list, some of its elements may be variables or lists
containing variables, etc.
beginning with a question mark, such as '?x or '?azimuth, is a variable, and
any other symbol is a constant, unless its position indicates that it is the
name of a relation or function.
substring "?forall." (case-insensitive) are treated specially; see
Quantification in this section. Variables in the knowledge base should not
contain hyphens in their pnames, because the planner creates variables with
hyphens, and it trusts that any variable with a hyphen is one that it created.]
For example, in the blocks world knowledge base, some important relations are
ON, which is binary, and ONTABLE and CLEAR, which are unary. Some predicates
6 L - t 4 n h t c h n w t q n 3-n 111 fnN A ?lnwer.hlnrk). reoresentinn the assertion that
the block named A is on some as-yet-undetermined other block; (2) (ONTABLE B),
meaning that the block named B is on the table; and (3) (CLEAR A), meaning
that A is clear (i.e., A is at rest on the table or on some other block, and
no block is on A). [Note that the "meanings" in the previous sentence,
although they may be evident to the user, are not literally understood by the
planner. The planner only "knows" such facts as that some actions achieve (ON
A ?lower.block), that certain actions require (CLEAR A) to be true in order
for them to be executed, that (CLEAR A) is true in the initial state, that
(ONTABLE B) is a goal, etc. It does not know any more about blocks, the
table, clearness, etc., than is contained in the knowledge base.]

Any symbol with a pname (i.e., print name)

[Variables with pnames beginning with the

b,

A negated atomic predicate is a list of exactly two elements, of which
the first is the symbol 'NOT, and the second is an atomic predicate. For
example, in the blocks world, the assertion (NOT (ONTABLE B)) would be
established by the action of picking B up from the table.

A. CONJUNCTION

A list of predicates and negated atomic predicates appearing as the
consequent of a production (respectively as the initial state), represents the
fact that all of those predicates are simultaneously true when the action

3-1

represented by the production finishes its execution (respectively true
initially).
predicates is true.

This is equivalent to saying that the conjunction of the

A list of predicates and negated atomic predicates appearing as the
antecedent of a production (respectively as a goal package), represents the
fact that all of those predicates are required to be simultaneously true for
the action represented by the production to be executed (respectively for the
goal package to be satisfied).
conjunction of the predicates is required to be true.

This is equivalent to saying that the

Those are the only kinds of conjunction of knowledge base predicates
permitted. However, see Quantification in this section.

B. DISJUNCTION

Disjunction of intensives is permitted through use of the Lisp function
or. That's the only explicit disjunction allowed in the knowledge base.
However, see Typed Variables under The Rest of the Productions File, and
ValueFromQueue, all under PRODUCTIONS AND SCHEDuLgD EVWTS, Section IV.

C. IMPLICATION

The planner may use facts that say that one conjunction of predicates
implies another.
'Inference. (See Inference under Production Types in PRODUCTIONS AND
SCHEDULED EVENTS, Section IV.)

Such a fact should be expressed as a production of the type

I
D. QUANTIFICATION

This is a feature of DEVISER that has not been tested in SWITCH since
the reimplementation of SWITCH in Symbolics Lisp Machine Zetalisp; thus, it is
not guaranteed to work as described. The following documentation is
reconstructed from the author's memory of what DEVISER did with quantification.

Some quantified predicates are permitted in the antecedents of produc-
tions. Such a predicate should be a list of two elements, of which the first
element is 'NOT, and the second is an atomic predicate in which one of the
variable names starts with the initial substring "?forall.". For instance,
one permitted quantified precondition is (NOT (ONTABLE ?forall.block)), which
means something similar to ''((forall ?block) (NOT (ONTABLE ?block)))".

The planner treats such a precondition with a closed-world assumption,
as mentioned in Section 11, page 2-2, paragraph 4. If no positive assertion
of the form (ONTABLE <something>) appears in the plan, the example
precondition is not contradicted and, thus, is assumed to be true. If some
assertions of that form do appear, the planner has to order the quantified
negation in time with respect to the positive assertions. If the quantified

3-2

negation is ordered after some of the positive ones, say after (ONTABLE B) and
(ONTABLE GI, the planner makes new blank nodes with assertions (NOT
(ONTABLE B)) and (NOT (ONTABLE G)) and makes them preconditions of the same
action for which the quantified negation was a precondition. This process is
referred to as "cloning" the negation. One clone is cloned for each distinct
positive assertion that is true before the universal negation.

In the planner an n-ary function is an (n+l)-ary relation such that
two assertions with this relation contradict each other if their first n
arguments match and their last arguments differ. That is, a function will not
have two different "values" (i.e., (n+l)th arguments) at the same time,
given the same (first n) arguments. Because it could easily occur that
(ONTABLE B) and (ONTABLE D) could be true at the same time in the blocks
world, ONTABLE is not a function but an ordinary reiarion. ~ U W C V C L ,

(TV.1.TUNED.TO DISNEY.CHA"EL) and (TV.1.TUNED.TO PLAYBOY.CHA"EL) could not
be true at the same time (TV.l is not one of these new digital TVs on which
one can watch two channels at a time), so TV.1.TUNED.TO is a function.
Because it is a unary relation, it is a nullary function, i.e., a constant.
[This is the argument-counting paradigm employed by the planner.
TV.1.TUNED.TO is not a constant, because it varies with time. Suppose,
though, that we were to call it a unary function. If you saw the predicate
(TV.1.TUNED.TO DISNEY.CHA"EL) and were told that TV.1.TUNED.TO was a unary
function, what would you think the argument was? DISNEY.CHA"EL, right? No,
the argument is the time. There is confusion.whether we call TV.1.TUNED.TO a
nullary function or a unary function. What the planner calls an n-ary
function is in reality an (n+l)-ary function, with time as an understood
argument, but assertions involving it are written as if it were an (n+l)-ary
relation where time is not an argument, but the function's value is the last
argument to the relation.]

However,

I I

i

That is the only kind of quantification permitted in the knowledge base
language. (See ValueFromQueue, Section IV.)

E. FUNCTIONS

Functions, as opposed to "Domain Functions", discussed under the
TEE DOMAIN FUNCTIONS FILE, Section VI, are special relations or predicates.
In abstract mathematics, where everything must be a set, a binary relation is
a set of ordered pairs, and a function of one argument is a relation (i.e., a
set of ordered pairs) in which no two distinct pairs have the same first
entry. In this theory, given a function f and an element IS, f(x) is the
second entry of the unique pair (i.e., member of f) of which the first entry
is x. That is to say, a function is identified with its graph. The
definition generalizes easily to functions of arbitrarily many arguments as
follows: A function of n arguments is an (n+l)-ary relation (i.e., a set
of ordered (n+l)-tuples), such that no two distinct members of the relation
have the same first n entries (in the same order).

3-3

The planner will not distinguish between functions and ordinary relations
unless the functions are declared as such in the productions file. The declara-
tion takes the form

(Functions (<name> <arity>) (<name> <arity>) ...I

for instance ,
(Functions (TV.1.TUNED.TO 0))

The knowledge base designer must use the same argument-counting paradigm
as the planner when declaring the <arity> of a function. The entire
declaration may be omitted if there are no functions.

It is not a good idea to use the negation of a predicate in which the
relation is a function.

The planner realizes that two positive assertions in which the relations
are the same and are an n-ary function, the first n arguments are the same
and are in the same order, and (n+l)th arguments differ, contradict each
other and, hence, cannot both be true at the same time. The actions achieving
and depending on these two assertions must be placed in time order so that the
action achieving one occurs after all actions depending on, and the action
achieving, the other.

Functions as described above in this subsection do not qualify as func-
tion symbols in predicate calculus. Actually, there are no function symbols
in the knowledge base language. (More accurately, there is no inference rule
permitting the substitution of a simpler value for a term made up of a
function symbol and its arguments.) While expressions such as (OPEN
(DOOR.OF ?room)) are allowed in the knowledge base language, when '?room is
instantiated, what is OPEN remains a two-element list, namely
(DOOR.OF <whatever value was substituted for '?room>). It is not the case
that some DOOR.OF function would be called to return a value that would be
substituted into the OPEN predicate, to turn it into (OPEN DOOR23). However,
see Assignment in this section.

F. INTENSIVES AND EXTENSIVES

The preconditions of a production include two types of predicates,
Intensives and Extensives. An extensive precondition is one that the planner
is supposed to plan to achieve, and an intensive one is one that the planner
is to evaluate when all of the variables are bound, and abort if it is not
true. For instance, the predicate (OPEN ?door) is probably extensive. The
planner should tie such a precondition in to an assertion that some explicit
door is open, or expand the precondition into an action that opens a door.
The predicate (>= ?number.of.moves 5) is probably intensive. Once
'?number.of.moves is instantiated, either the value is >= 5 or it is not; no
planning is needed to make a number >= 5 if it is already; and no amount of
planning is going to make a number >= 5 if it isn't already. (Backtracking
and moving forward with a different alternative may well result in reinstan-

3-4

tiating '?number.of.moves with a different value that is >= 5, in which case
planning can proceed.)
and placed into LiteralTrays to become assertions of new blank nodes.
Intensive preconditions are copied and instantiated and placed into
LiteralTrays to become constraints on the variables mentioned in them. *

Extensive preconditions are copied and instantiated

The planner classifies a predicate as intensive or extensive by the
predicate's relation. If the relation is in a list that is the value of the
PROG variable 'IntensiveRelations, the planner treats the predicate as an
intensive; if not, it treats it as an extensive. Left to its own devices, the
planner initializes IntensiveRelations so that it contains exactly 'EQ, 'NEQ,
'>, 'EQUAL, 'OR, '<=, '*Goal, '<, 'Consume, '>=, 'UserConsent, 'Cwgeq,
'*Constant, '*Ask, and the assignment symbol (see Assignment in this
section). Note that many of these are Lisp predicates. The ones that are not
Lisp predicates are explained under PRODUCTIONS AND SCHEDULED EVENTS,
Section IV.

The knowledge base designer may adjust IntensiveRelations by including a
form that resets it in the domain functions file (Section VI). For instance,
one could write

(SETQ IntensiveRelations
(APPEND {list of extra IntensiveRelations}

IntensiveRelations))

in the domain functions file. (As 'IntensiveRelations is a PROG variable of
the planner, it is likely to be unbound outside the planner. The above form
is likely to cause an error if the domain functions file is loaded outside the
planner, which might happen if, for instance, somebody tries to test and debug
the domain functions outside the planner. If there is a chance that will
happen, use a form such as

(AND (BOUNDP ' IntensiveRelations)
(SETQ IntensiveRelations

(APPEND {whatever} IntensiveRelations)))

instead of the above form in the domain functions file.)

The knowledge base designer may define more predicates among the domain
functions, have their names appended to IntensiveRelations as described above,
and use them as intensive relations in the productions.

Note that SWITCH'S input parser treats most lists beginning with '* as
comments, and leaves them out of the internal representations of the
productions. Because of that, '* should not be used to represent the
multiplication function in an intensive. Instead, one of the synonyms times
or *$ should be used when multiplication is needed in an intensive.

See the next subsection, Assignment, immediately following, for a
discussion of a very special intensive relation.

3-5

G. ASSIGNMENT

Usually, the planner determines the value to be substituted for a
variable in a predicate to make the predicate match another one that already
appears with fewer variables. However, sometimes it is desirable to compute
the instantiation of a variable by performing some arithmetic or other Lisp
operation on other values.
purpose.

The assignment intensive was created for this

The knowledge base designer may choose a symbol to be the assignment
symbol. For this discussion, suppose the symbol '= is chosen. (Then '= is an
intensive relation, but it does not stand for the Lisp predicate of numerical
equality!) In a (hypothetical) hotel-burglary knowledge base, there might be
a domain function DOOR.OF mapping room identifiers to door identifiers, and a
production with preconditions

((= ?door (DOOR.OF ?room))
(OPEN ?door))

and consequent

((VULNERABLE ?room))

If our planner were trying to establish (VULNERABLE Presidentialsuite), it might
expand it with this production. It would (1) substitute 'Presidentialsuite for
'?room (early enough to avoid confusion with any other ?room variables elsewhere
in the plan); (2) substitute a unique form of '?door, say '?dOOr-5, for '?door
(to avoid confusion with other ?door variables elsewhere in the plan); (3) notice
that no more variables remained in the last, "expression" part of the constraint

(= ?dOOr-5 (DOOR.OF Presidentialsuite))

and (4) have (DOOR.OF Presidentialsuite) evaluated to determine the value to
substitute f o r '?door-5. Suppose the value is 'PresidentialDoor. The
extensive precondition

(OPEN ?door-S)

[the unique form of (OPEN ?door) for this use of the production] would then be
modified further to become

(OPEN PresidentialDoor)

which would be the next subgoal to be pursued.

Assignment may also be used to compute instantiations for variables that
occur in the consequent of the production (unlike the above example, where the
variable, ?door, to which a value was assigned, appeared only in the
antecedent). In this case, though, the variable's instantiation should not
already have been determined, so as to make the predicate in which it appears
match another predicate. For instance, it would be acceptable if the variable
occurred only in a side effect, a consequent predicate that you are sure is
never the reason a production is used in an expansion.

' intensive predicate itself must appear in the antecedent.
Also, the assignment

3-6

Not only can the knowledge base designer choose the symbol that will be
the assignment symbol, but for convenience the assignment symbol, and the
variable to which a value is to be assigned, may appear in either order among
the first two elements of the intensive in the knowledge base files.
the knowledge base is read in, if the variable is before the assignment
symbol, the planner automatically switches them so that the assignment symbol
is first in its internal knowledge base.)
base designer's preference, the preceding assignment to ?door could have been
written either

(When

Thus, depending on the knowledge

(= ?door (DOOR.OF ?room))

or

(?door = (D00R.0~ ?room))

The second form would seem much more natural than the first if, for instance,
the assignment symbol were 'e.

The same assignment precondition can be used to assign values to several
variables through destructuring. For instance, in the precondition

((?new.ap.w.pos ?new.j.mode ?new.pps.hv.state ?new.filt.w.pos.mode
?new.filt.w.pos ?new.an.w.pos.mode ?new.an.w.pos) - -

(PPS.CONFIGURATION.PARAMETERS ?new.configuration))

PPS.CONFIGURATION.PARAMETERS is a domain function that returns a list of seven
elements, essentially consulting a lookup table to find that list.
?new.configuration has been instantiated, PPS.CONFIGURATION.PARAMETERS is
called, and the seven variables in the list on the left of the = sign are
instantiated respectively with the seven elements of the list returned by
PPS.CONFIGURATION.PARAMETERS. The knowledge base designer is responsible for
seeing to it that the form that generates the values to be assigned returns
them in a tree of the same size and shape as the tree of variables in the
intensive.

When

The planner recognizes the assignment symbol because it is the value of
the PROG variable 'Equalsign. The program initializes that variable by
querying the user, "What shall I use for Equalsign?", soon after it begins.

It is possible to use assignment to have arbitrary Lisp code evaluated for
effect when a production is used in an expansion, by making up a dummy variable
that does not appear elsewhere in the production, and including an assignment

(<assignment symbol> <dummy variable> <arbitrary Lisp code>)
in the preconditions.

the preceding subsection, applies to Assignment intensives along with all other
intensives.

The warning about multiplication, under Intensives and Extensives in

See also ValueFromQueue under PRODUCTIONS AND SCHEDULED EVENTS,
Section IV, for a way of stepping through a list of alternative assignments for
a variable.

3-7

SECTION IV

PRODUCTIONS AND SCHEDULED EVENTS

The bulk of the knowledge base productions file and scheduled-events
file will consist of production definitions, which are Lisp s-expressions
describing actions, inferences, and events. The definitions are contained in
a list of the form

(Productions <production> <production> --)

in the productions file, and

(ScheduledEvents <production> <production> --)

in the scheduled-events file.

A Scheduled Event is an activity that will occur at a specified time and
change the state of the world, whether or not the planner wants it to. The
planner is told the Scheduled Events because it must plan around the changes
that they make in the state of the world. The ordinary productions are the
activities that the planner may choose to enter in the plan or not as the need
arises. It is anticipated that the user and knowledge base designer will want
to keep the ordinary productions in the productions file and the Scheduled
Events in the scheduled events file and, indeed, the replanning input
generator segregates its results in this way. However, the planner will
accept input in which the ordinary productions and Scheduled Events are
divided arbitrarily between the two files. It recognizes a production as a
Scheduled Event by the form of its Window "option", as explained shortly.

A production s-expression has the following form.

(<name> <type> <antecedent> --a <consequent> . <options>)
The <name> of a production is a symbol, usually chosen to have

mnemonic significance to the people who design the knowledge base and use the
system. For instance, in the blocks world knowledge base, there are
productions named PICKUP, PUTDOWN, STACK, and UNSTACK.

The <type> of a production is one of the four symbols 'Action,
'Inference, 'ForwardEvent, 'Event. Their meanings will be explained in
subsequent material in this section.

The <antecedent> of a production s-expression is a (possibly empty)
list of predicates describing the necessary preconditions under which the
production may be executed; the planner does not schedule any changes
affecting the truth of the preconditions during execution of the production.
Both intensive and extensive preconditions may occur in the list of
preconditions, and they may be intermingled. The planner separates them when
it reads in the productions file.
the extensive preconditions with respekt to each other. More precisely, it is

(The planner is sensitive t o the order of

4-1

sensitive to the order in which the new subgoals generated by the extensive
preconditions come up for consideration. This order is the same as the order
in which they appear in the production s-expression, unless there is a
Priorities declaration in the productions file.
under The Rest of the Productions File in this section.) Some of the
preconditions may be surrounded by "advice"; the predicate appears not as a
top-level element of the <antecedent>, but as the last element of a list
which is a top-level element of the <antecedent>.
this inner list constitute the advice. See Advice and Desperation,
Priorities, and Urgency in this section for more details.

See Precondition Priorities

The earlier elements of

In the above form, ---> stands for the symbol'--->

The <consequent> of a production s-expression is a (possibly empty)
list of predicates describing the results of executing the production.
predicates in the <consequent> must be extensive and must not have advice,
with the possible exception of *Goal assertions, which are described under
*Goal Assertions, Section IV-H.

A l l

The <options> of a production s-expression is a (possibly empty)
list of options, up to one of each of the following options, in any order:

(1) Duration, in one of the forms

(Duration <time>)

where <time> is a base-10. number of seconds, an hh:mm:ss:decimal symbol
(slashified!), or a variable from elsewhere in the production; or

(Duration <number> <units>)

where <number> is a base-10. number or a variable from elsewhere in the
production, and <units> is one of the symbols 'Second, 'Seconds, 'Minute,
'Minutes, 'Hour, 'Hours.

This specifies the duration of the production. A production with an
option (Duration 10 Minutes) or (Duration >00:10:00>) would have a duration
of 10 minutes. A production with an option (Duration ?duration) might have a
different duration each time it was used. The duration of a specific use of
the production, in seconds, would be whatever value was substituted for the
variable '?duration in that instance. Often the (Duration ?duration) option
is used with '?duration appearing in a consequent-assertion of the production,
and when the production is inserted into the plan, the value for '?duration
has propagated up from a goal statement.
appeared in hh:mm:ss.decimal form in the goal statement in the knowledge base;
the planner would have already converted it into a number of seconds by the
time it wanted to substitute it for '?duration.

Moreover, that value may have

If no Duration option is present in the production definition, a default
duration of zero is provided for that production when the productions file is
read in.

4-2

(2) Irrevocability, in one of the forms

(Irrevocable?)
(Irrevocable? nil)

or

(Irrevocable? <Lisp form not explicitly nil>)

This specifies whatever or not a use of the production is irrevocable,
i.e., whether or not it is forced to persist in a replan by virtue of its
inclusion in the previous plan. This might happen if, for instance, the agent
that was to execute the production were not able to receive more
communications from the planner before executing it. The planner would not be
able to change the agent's orders in the replan, so the replan would have to
show the activity going on as it did in the original plan. If the production
s-expression contains an irrevocability declaration of one of the first two
forms, it will always be irrevocable. If it contains the third form of
declaration the Lisp form will be called up and evaluated whenever it becomes
necessary to determine if the use of the production is irrevocable. If the
form evaluates to n i l , the instance is not irrevocable; if it evaluates to
some other value, the instance is irrevocable. The Lisp form in the
declaration may contain the free variable 'Node which, at evaluation time, will
be bound to the node containing the instance in question of the production.
For instance, consider a situation in which the agent flies away to execute
the instructions and is incommunicado while airborne. Any action that such an
agent might execute would need an irrevocability declaration such as:

(Irrevocable? (FlyingIrrevocabilityPredicate Node))

where FlyingIrrevocabilityPredicate is a domain function (see THE DOMAIN
FUNCTIONS FILE, Section IV) that determines the name of the agent of this
specific use of the action, checks that the agent is indeed one of those
that do not receive new orders while airborne, searches through the nodes
earlier than Node for the latest one asserting that the agent took off,
finds the time of that take-off node, and returns the value of
(<= <take-off time> <start time of replan>). If that predicate
evaluates to nil, the replan starts before the agent takes off, so the
agent can receive new orders overwriting the action of which the
irrevocability is in question, so the action is not irrevocable. If the
<= predicate yields t, however, the agent is aloft at the start time of
the new plan, and will perform this action as originally ordered, so the
action is irrevocable. (The knowledge base from which this example is drawn
is set up so that an agent's name ceases to refer to anything once the agent
lands. Thus, if the <= predicate is evaluated, the agent will not have
landed by the new start time; and if the <= predicate returns t, the
agent will be aloft at the new start time.)
lacks an irrevocability declaration, no use of the production will be
irrevocable.

If a production s-expression

(3) Measurability of the beginning and/or end of a use of the
production, in the form

(MeasurableProduction . <declarations>)
1

4-3

where <declarations> is a list of up to three declarations, up to one from
each of the following groups.

Begin
(Begin)
(Begin nil)
(Begin enon-nil Lisp form>)

End
(End
(End nil)
(End enon-nil Lisp form>)

Instantaneous
(Instantaneous)
(Instantaneous nil)
(Instantaneous enon-nil Lisp form>)

This is intended for use with an execution monitor and discrepancy
replanning, which are incomplete.
productions, i.e., some "plan steps", are detectable by, and important to, the
execution monitor, and some are not. The execution monitor should be able to
read predictions about the plan steps in the first category, and should not
receive any predictions about those in the second. The measurability
declaration of a production controls whether a prediction will be generated
about the beginning or end of an instance of that production that takes time,
or about the occurrence of an instance with zero duration. This declaration
is independent of measurability of the consequent-assertions of the
production. Depending on the Measurables declaration in the productions file
(see Measurable Relations under The Rest of the Productions File,
Subsection J in this section), there may also be predictions generated about
those consequent-assertions. In some, perhaps all, domains, the predictions
about the assertions will be sufficient and no beginning, end, or occurrence
predictions will be needed. In any case, in the present version of the
program the features that use the predictions are not supported because they
are still under development. If you want to include this option anyway, this
is the effect of the various declarations.

The theory is that some instances of

If Begin, (Begin) or (Begin nil) appears among the measurability
declarations of a production, and that production appears in the plan, a
prediction of the beginning of that instance of the production will be
generated and stored in a list of predictions.
form>) appears and the production is used, the Lisp form will be called up
and evaluated to determine whether a prediction of the beginning of that
instance of the production will be generated and stored in the list of
predictions; if the Lisp form evaluates to nil, no prediction will be
generated, and if it evaluates to another value, a prediction will be
generated. If no declaration appears where the car is 'Begin (including the
possibility that the MeasurableProduction option was omitted entirely), no
prediction of the beginning of the production will ever be generated.
Similarly, the declaration-forms End, (End), (End nil), (End enon-nil Lisp form>),

If (Begin <non-nil Lisp

4-4

and lack-of-End-declaration control the generation and storing of predictions
of ends of instances of the production in the plan.
(Instantaneous), (Instantaneous nil), (Instantaneous <non-nil Lisp form>),
and lack-of-Instantaneous-declaration control the generation and storing of
predictions of the occurrence of a zero-duration instance of a production.
each of the three cases, the <non-nil Lisp form> may include the free
variable 'Node, which, at evaluation time, will be bound to the node
containing the instance of the production in question.
production had the option (MeasurableProduction Begin End), then each step in
the final plan that was an instance of that production with positive duration
would give rise to both a prediction of the beginning of the plan step and a
prediction of its end. Each step in the plan that was an instance of that
production with zero duration would give rise to only a prediction of the
instantaneous occurrence of the step. If a production had the option
(MeasurableProduction Instantaneous), then each occurrence of that production
in the final plan would give rise to an instantaneous prediction if the plan
step had zero duration, and to no prediction if the plan step had positive
duration.

Similarly, Instantaneous,

In

For instance, if a

(4) PreferredFor, in the form

(PreferredFor <predicate>)

where <predicate> is equal to, o r equal to a partial instantiation of, one
of the consequent-assertions of the production.

The effect of this declaration is that if this production and others are
considered as alternative expansions to achieve a goal or subgoal that matches
<predicate>, this production will be tried before any production that did
not have a PreferredFor declaration matching the goal or subgoal. That is,
this production is a preferred way of achieving <predicate>. For instance,
in one knowledge base there are two productions which could be used to achieve

(PPS.APERTURE.WHEEL.POSITION (?new.ap.w.pos ?new.configuration))

one by turning the aperture wheel to the new position, and the other by making
use of a possible circumstance in which the aperture wheel is already in the
desired position for a different configuration. The second one has a

(PreferredFor
(PPS.APERTURE.WHEEL.POSITION (?new.ap.w.pos

?new.configuration)))

option, so that if the planner has to plan to achieve

(PPS.APERTURE.WHEEL.POSITION (?new.ap.w.pos ?new.configuration))

it will first try to plan to do it without actually moving the wheel.
Counterintuitively, a production cannot be PreferredFor more than one of its
consequent-assertions, and more than one production can be PreferredFor the
same assertion.

4-5

(5) Window, in one of the forms

(Window After <time>)
(Window At <time>)
(Window Before <time>)
(Window Between <timel> <time2>)
(Window EarliestIdealLatest <timel> <time2> <time3>)

where each of <time>, <timel>, <time2>, and <time3> is a base-10. number
of seconds, an hh:mm:ss.decimal symbol (slashified), or a variable from
elsewhere in the production; a special loosening of the restriction applies to
<time2> in the (Window EarliestIdealLatest --) form, in which <time2>
is allowed to be nil [but, as you will see, if it's nil you could have
achieved equivalent results with a (Window Between --1 form instead].
declaration specifies the time interval during which execution of an instance
of the production can start.

This

A window declaration of the form (Window After --) has the obvious
meaning; for instance, a production with (Window After 5/:00/:00) option would
not be used as a plan step to begin before 5:OO:OO.

A window declaration of the form (Window At <time>) has a logically
Not only does it mean that <time> stronger meaning than the obvious one.

is the only time at which the production may start; if <time> is an
explicit time instead of a variable, (Window At <time>) causes the
production to become a Scheduled Event, so the planner will automatically
include an instance of the production beginning at <time>.
the production to be optional, but you want to restrict its start-time window
to a single explicit instant, use

If you want

(Window Between <explicit instant> <explicit instant>)

or

(Window EarliestIdealLatest <explicit instant> nil
<explicit instant>)

or

(Window EarliestIdealLatest <explicit instant>
<explicit instant>
<explicit instant>)

instead of

(Window At <explicit instant>)

Or, you could have (Window At ?start.time) as the window, and assign the
explicit start time as the value of '?start.time with an assignment in the
body of the production (see Assignment under preceding KNOWLEDGE BASE
LANGUAGE, Section 111-G)

A window declaration of the form (Window Before --) or (Window Between --)
has the obvious meaning.

4-6

A window declaration of the form
(Window EarliestIdealLatest <timel> <time2> <time3>) means that the
production, if used, must start between <timel> and <time3>, with
<time2> as its ideal start time. One of the last things that the
planner does in making a plan is to choose a start time for each activity
where the start-time window has not already been shrunk to a point by its
interaction with other activities. If the activity came from a production
with a (Window EarliestIdealLatest <timel> <time2> <time3>)
declaration, where <time2> was an explicit time or a variable that was
instantiated with an explicit time instead of n i l , <time2> (or its
instantiation) is the ideal start time of that instance of the production,
and the planner tries to.choose a start time as close as possible to the
ideal start time. Many productions have Window options similar to

Besides the preceding options, options named 'InConnections and
'OutConnections are constructed by the replanning input generator to pass
certain information from the previous plan to the planner for replanning.
(This information concerns the dependency relationships among "simultaneous"
zero-duration irrevocable activities in the old plan. The planner will use it
t o place the equivalent activities in the replan in order.)
named 'PlotLine was once used, and the planner still accepts it as an optional
part of the input. Any other option will cause the program to enter a break
when reading the productions.

Another option

I

I
t

A. PRODUCTION TYPES

1. Action

A production of type 'Action is a "standard" production. If the
planner has made a partial plan in which there remains an unfulfilled goal (or
subgoal), and cannot tie that goal in anywhere, it may expand the goal's blank

4-7

(Window EarliestIdealLatest ?earliest ?ideal ?latest)

where '?earliest, '?ideal, and '?latest are variables that appear in some
consequent assertion of the production and that will be instantiated so as to
match some times that appear in a goal statement. For instance, in one
knowledge base there is a production, with such a Window option, which achieves

(CALIBRATED PPS ?earliest ?ideal ?latest)

This production might be used in an expansion to achieve a goal such as

(CALIBRATED PPS >OO:lO:OO> >00:15:00> >00:20:00>)

In that case, for that instance '?earliest, '?ideal, and '?latest would be
instantiated with 600, 900, and 1200 respectively (the numbers of seconds in
10, 15, and 20 minutes, respectively). The instantiations would propagate to
the Window, and the plan step would be restricted to beginning between 10 and
20 minutes after the reference time 0, with an ideal start time at 15 minutes.
If a production has no ideal start time, the planner makes each instance of it
start as early as possible. If no window is declared for a production, the
default assumption is that an instance of the production could start at any
time (once its preconditions are established), and it has no ideal start time.

node with an Action that contains the goal in its consequent. This backward
chaining is the only use for an Action.
planner eventually finds a solution incorporating it, the presence of the
expanded node means that the agents are to execute the action described by the
production.
preconditions for the Action will be true at the beginning of it and
throughout its execution. After execution, the Action's assertions will be
true (except for *Goal assertions, if any; see *Goal Assertions in
Subsection H of this section), and the planner will not have tried to ensure
that the preconditions remain true (unless it knew that they were also needed
for some other activity).

If the expansion succeeds and the

The planner will make sure that the plan specifies that the

2. Event

A production of type 'Event represents an activity that will occur
once its preconditions are true. If the Event achieves some effect that the
planner is trying to plan to achieve, the planner may use the Event in
backward chaining, as if the Event were an Action. That is, if the planner
cannot tie in a goal (or subgoal), it may expand the goal's blank node with an
Event that contains the goal in its consequent. If the expansion succeeds and
the planner eventually finds a solution incorporating it, the presence of the
Event means that the event described by the production will happen. Usually
an Action describes an activity that the agents have to execute, while an
Event describes an activity that will happen without any work on the part of
the agents.
the event, but that work would be described in other nodes.)

(The agents may have to do work to establish the preconditions of

Besides the preceding use in backward chaining, the planner will
forward-chain on an Event if it schedules, for other reasons, all of the
Event's preconditions to be true at the same time. A new node will be created
and immediately expanded with the Event production, with the newly created
blank precondition nodes immediately tied into the preconditions which were
already scheduled to be true. The Event's assertions will be established
whether or not any of them are needed. When an Event is entered into the plan
in this way, it represents a "side effect" of a conjunction of other
productions. When all of those other productions are present in the plan,
their achieved assertions cause the Event to fire forward, and its assertions
are the side effects of the combination of the other productions.

Whichever direction of chaining caused the Event to be entered in the
plan, the planner will make sure that the plan specifies that the
preconditions of the Event are true at its beginning and throughout its
execution. After execution, the Event's assertions will be true (except for
*Goal assertions, if any; see *Goal Assertions, explained later in this
section, Subsection H), but the planner will not have tried to ensure that the
preconditions remain true (unless it knew that they were also needed for some
other activity).

3. ForwardEvent

A production of type 'ForwardEvent is used as an Event in forward
chaining, and is not used at all in backward chaining. It represents a side

4-8

effect of a combination of productions, as does an Event when it chains
forward, but the ForwardEvent cannot be entered into the plan for the purpose
of achieving one of its effects.
ForwardEvent if it schedules, for other reasons, all of the ForwardEvent's
preconditions to be true at the same time. As with an Action or Event, the
planner will make sure that the plan specifies that the ForwardEvent's
preconditions are true at its beginning and throughout its execution.
execution, the ForwardEvent's assertions are true (except for *Goal
assertions, if any; see *Goal Assertions, in this section), but the planner
will not have tried to ensure that the preconditions remain true (unless it
knew that they were also needed for some other activity).

The planner will forward-chain on a

After

A Scheduled Event may have preconditions. For instance, it may
represent an action that the knowledge base designer insists on having done at
a fixed time, in which case the planner should ensure that the preconditions
are true. Or, the Scheduled Event might change the uncommitted amounts of
some group of nonconsumable resource types (see Nonconsumable Resources, or
Conserved Resources under The Rest of the Productions File, Subsection J in
this section), in which case it would have to have preconditions that state
the uncommitted levels of the resources at its beginning, and the relation of
those initially-available quantities to the finally-available quantities. If
a Scheduled Event does have preconditions, it will be forced into the initial
partial plan in a less direct way than one with no preconditions. A "phantom
goal" of the form (*Pg#), where # stands for a string of digits, will be
generated and added to both the goals list and the assertions of this
production. A unique phantom goal is generated for each Scheduled Event with
preconditions. The Scheduled Event is the only way to achieve its

achieve that phantom goal. (At least, this is the intention; it could be
, corresponding phantom goal and, thus, it will be used in backward chaining to

i

4. Inference

A production of type 'Inference is used only for backward
chaining. If a goal (or subgoal) is established by use of an Inference, the
planner knows that the goal should not be assumed to remain true if any of the
Inference's preconditions become contradicted. Thus, for whatever length of
time the Inference's assertions are needed, the planner makes sure that the
plan specifies that the preconditions remain true. (Unfortunately, the
replanning input generator is not so careful about Inference assertions. See
In Runaround between Calls to the Planner under RUNNING THE SYSTEM,
Section VIII.)

B. PRODUCTION PSEUDO-TYPE: SCHEDULED EVENT

Any production, of any type, with a (Window At <time>) window
declaration in which <time> is an explicit time, i.e., not a variable,
automatically becomes a Scheduled Event. If it has no preconditions, it is
entered into the initial partial plan as beginning at the given time, and its
consequent assertions (except for *Goal assertions, if any; see *Goal
Assertions in this section) are established at its finish time (the sum of
its given start time and its duration).

4-9

defeated if the knowledge base designer him- or herself uses relation names of
the form *Pg#.)
constructed so that the preconditions of the Scheduled Event are true at its
start time and throughout its execution; the Scheduled Event's assertions
(except for *Goal assertions, if any; see *Goal Assertions in this section)
will be established at its finish time.

The usual planner mechanisms will assure that the plan is

Except as described in the preceding paragraph, a Scheduled Event is
never used for expansion in backward or forward chaining.

C. PRODUCTIONS THAT ARE NOT IN THE KNOWLEDGE BASE

The planner converts each production (including Scheduled Events) from
the knowledge base into an internal Production object, with fields including
Name, Type, Antecedent, and Windowpredicate among others. Also, it creates
for its own use several more Production objects. Most of these have
meaningful contents in only one field, the Name field. The Start and Stop
productions have Names, 'Start and 'Stop, respectively. The Phantom production
has the Name, 'Phantom, and is the Production of each phantom node. The Blank
production has the Name, 'Blank, and is the Production (i.e.* contents of the
Production field) of each blank node. The planner changes a blank node to a
node of another kind by replacing the node's Production, which is originally
the Blank production, with another production.
the Phantom production if the blank node were being tied in somewhere, or were
an uncontradicted negation. If the blank node gets expanded, its new
Production is the production with which it is expanded.

The other production would be

Another production that the planner creates for itself is the SkipIt
production, with Name, 'SorryNoCanDo. This production may be used to "expand"
a blank node, containing as its assertion a major goal, i.e., a goal declared
in the problem file. If that happens, the plan will not contain any steps
that were scheduled on purpose to achieve that major goal; the major goal will
be "skipped". The plan might not totally ignore the major goal, because the
major goal might have been ordered with respect to conflicting assertions
before it came up for expansion, and in that case its temporary presence might
have affected the time windows of some activities. See In the Planner under
RUNNING TEE SYSTEM, Section VIII-B, for information on user control of goal
skipping.

D. INTENSIVES

1. *Goal

A production s-expression may have up to one *Goal precondition.
A *Goal precondition has the form

(*Goal <predicate>)

where <predicate> is equal to an atomic (i.e., not negated) assertion of
the production, or a partial instantiation thereof. When such a precondition
is present, the production will not be used in any expansion to achieve any of
its atomic assertions except <predicate>, although it may be used to

4-10

achieve some of its negative assertions.
consequent assertions have the same relation and a fortuitous distribution of
variables and constants, and one of them is the <predicate> in the *Goal
precondition, it might happen that the production will be used in an expansion
to achieve *the other one. For instance, if the production had the sole
precondition (*Goal (0N.GROUND ?left.foot)) and the assertions (0N.GROUND
?left.foot) and (0N.GROUND ?right.foot), it could possibly turn up as the
production in two expansions, with different substitutions, to achieve
(0N.GROUND A) .) Note that an Event or ForwardEvent with a *Goal precondition
will be used for forward chaining only if the <predicate> accidentally
matches the next goal or subgoal that is waiting to be achieved after forward
chaining.

(Note: If two of the production's

(It might be more reasonable to require them to be declared in the problem
file, but, actually, the planner expects to see the declaration in the
productions file.) See The Rest of the Productions File, Subsection J in
this section, for the form of the declaration. In the above form of the
consume precondition, <resource name> must be one of the declared resource
names, or a variable that will be instantiated with one of the declared
resource names; and <quantity> must be a number or a variable that will be
instantiated with a number. As it makes expansions with productions that use
a resource, the planner keeps track of how much of each resource the plan uses
as a whole. If it backtracks over a resource-using expansion, the planner
subtracts the appropriate amount from the used quantity of the resource. If
it ever uses an expansion that causes the used quantity to exceed the
available quantity, it aborts that expansion. (It does not, for instance, try

, to schedule some action that adds more to the available amount of the
resource.) I

,

*Goal may also be used in the consequent of a production, where it has a
much different meaning, which is discussed under *Goal Assertions in this
sect ion.

2. Consume

A production s-expression may have zero or more Consume
preconditions. Each of these would have the form

(Consume <resource name> <quantity>)

3 . UserConsent

If (UserConsent) appears in the preconditions of a production, the
production will not be used in an expansion until the user consents. If it wants
to use the production, the planner will display, "The production [name],
requiring user consent, is being considered.", ask, "Consent given?", and wait
for an answer that is acceptable to y-or-n-p. If the answer arrives and is

4-1 1

negative, the production will not be used (to expand this node, with the
substitution that is at hand). If the answer arrives and is affirmative, the
constraint is satisfied this time. However, this time the question may have
been asked while the planner was finding alternative expansions, and it may be
asked again if the planner actually tries to do the expansion. If the user
keeps answering it Y, and the other constraints are met, and the planner is
allowed to continue through any previous alternatives, the production will be
used.

4. Cwgeq

Except for the fact that it is not a system function, this is a
fairly ordinary intensive, as eq or <=.
greater than or equal" and is a predicate of vectors (lists of numbers).
is defined as a macro and may or may not evaluate its arguments. It takes two
arguments, each of which may be either an explicit list of numbers (which
Cwgeq would not evaluate) or a form that evaluates to a list of numbers (which
Cwgeq would evaluate) (but not a list of forms that evaluate to numbers).
both arguments are nonempty, they should have the same length; it is
permissible for one argument to be nil and not the other, or for both to be
nil. If both arguments are nonempty lists, Cwgeq returns t if the entry
in each position of the first argument is >= the entry in the corresponding
position of the second argument, and it returns nil otherwise. For instance:

Cwgeq stands for "Component-wise
It

If

(Cwgeq (loop for X in ' ("HARRY" "J. " "PORTA")
collect (STRING-LENGTH X))

(1 2 3))

would return t, while

(Cwgeq (loop for X in '("HARRY" "J" "PORTA")
collect (STRING-LENGTH X))

(1 2 3))

would return nil. If exactly one argument is nil, Cwgeq returns what it
would have if that argument had been a list of as many 0's as there were
entries in the other argument. [That is, (Cwgeq <list> nil) is
equivalent to "all entries in <list> are nonnegative", and (Cwgeq nil <list>)
is equivalent to "all entries in <list> are nonpositive".] Finally,
(Cwgeq nil n i l) returns t.

5 . *Constant

A production may have zero o r more preconditions of the form

(*Constant <variable>)

where <variable> is a variable that appears elsewhere in the production.
In backward chaining the constraint is evaluated during expansion. If the

4-1 2

expansion is providing an instantiation for the <variable> with an
expression that isn't a variable, the constraint is satisfied. Otherwise, the
constraint is not satisfied and the expansion aborts. In forward chaining the
constraint is evaluated while the planner is considering possible ways to
forward chain. In this case, if there is an instantiation for the
<variable> with some expression that has no variables, the constraint is
satisfied; otherwise the constraint is not satisfied, and the forward
expansion with this production does not take place (yet). For instance, one
ForwardEvent in one knowledge base has *Constant preconditions

This intensive is a way for the knowledge base designer to add more user
interaction to each run of the program than there is already. It takes two
arguments, Question and Default; Question should be a string or a form that,
after instantiation of variables, will evaluate to a string. When I I

(*Constant ?Plane)

I (*Ask <question> <default>)
l

is evaluated, if <question> is a string it is displayed, otherwise
<question> is evaluated and the result is displayed. Then, the user is
expected to type in an answer, which will be read by the Lisp function
read. If <default> is nil, the program will wait forever for the
answer, and return the answer. If <default> is non-nil the program
waits for only a finite time, and returns the answer if it was typed in soon
enough, or returns <default> otherwise.

and

(*Constant ?Mission)

and the other preconditions

(*Consecutive (TOOK.OFF ?Mission))

(COMMITTED ?Plane ?Mission)

and

(NOT (TIMER.TRIGGERED ?Mission))

That ForwardEvent will not fire forward just because there are TOOK.OFF and
COMMITTED assertions in the plan and no TIMER.TRIGGERED assertion. Instead,
it will wait until the TOOK.OFF and COMMITTED assertions have consistent
non-variable instantiations for the ?Plane and ?Mission arguments.

6 . *Ask

(This intensive is a feature of DEVISER that has not been tested
in SWITCH since the transfer of SWITCH to Lisp machines; thus, it is not
guaranteed to work. The following documentation is just a paraphrase of the
obvious intentions of the source code.)

4-13

E. VALUEFROMQUEUE

While it fulfills a purpose similar to that of the assignment intensive,
'ValueFromQueue is not an intensive relation, but an extensive relation. It
is used to make the planner "step through" a list of possible instantiations
of a variable, trying them one at a time.
preconditions of a production, in a predicate quite similar to an assignment
intensive that assigns a value to a single variable (ValueFromQueue does not
have a destructuring feature such as that which enables the assignment
intensive to compute the instantiations for a tree of variables
simultaneously). For example, some production might have

It would appear among the

(ValueFromQueue ?plane (BestPlaneForTheJob ?mission))

in its preconditions.
function that returns a list of things each of which is suitable as an
instantiation for ?plane.

In this case, one presumes that BestPlaneForTheJob is a

Some of the code necessary for handling ValueFromQueue assignments is
present in the system. However, ValueFromQueue will not work unless the
knowledge base contains a production such as the following, and contains no
other productions establishing assertions with the relation 'ValueFromQueue:

(SELECT Inference
((?X = ?Member))

((ValueFromQueue ?X ?Expression)))
-->

The properties of this production that are essential for enabling it to
make ValueFromQueue work are (1) its type is one of the two backward-chaining
types 'Action, 'Inference; (2a) it mentions exactly three variables, (2b) it
has exactly one precondition, and that precondition is an assignment, assigning
the second variable to the first variable, and (2c) it has exactly one
consequent assertion, and that assertion is

(ValueFromQueue <first variable> <third variable>)

and (3) it has no options. The exact names of the production and the
variables do not matter.

As 'ValueFromQueue is an extensive relation, a ValueFromQueue
precondition of a production will become the assertion of a blank node if that
production is used in an expansion.
abort or unwind beforehand, the ValueFromQueue precondition blank node itself
will eventually come up for expansion (the planner never ties in a
ValueFromQueue blank node, at least not in backward chaining). At that time,
for planning to proceed, the first argument to ValueFromQueue, the variable,
must still be a variable (i.ee, it must not have already been instantiated
with anything but another variable), and the second argument, the queue-
generating expression, must contain no variables. If one of these conditions
is not met, there will be no expansion alternatives, and the planner will
start to backtrack.
the planner evaluates the queue-generating expression, and generates one

Provided that the expansion does not

(This may be what you want.) If both conditions are met,

4-14

expansion alternative for each element of "queue" (the value returned by the
queue-generating expression). Each alternative is to use the "SELECT"
production. The alternatives differ in their substitutions. The first
alternative tries to substitute the first element in the queue for the
variable; the second alternative tries to substitute the second element in the
queue for the variable; etc. The knowledge base designer will probably want
to write queue-generating expressions that produce alternative instantiations
so that the first one is the one most likely, according to some heuristic, to
lead to success. If the queue turns out to be nil, there will be no
expansion alternatives and the planner will backtrack; if the queue turns out
to be some other non-list, that will probably cause an error.

It is not a good idea to use the negation of a ValueFromQueue predicate.

F. ADVICE

Individual preconditions in a production can be surrounded by "advice".
The three forms of advice are *Already, *Consecutive, and priority advice. A
precondition with advice consists of a list in which the last element is the
predicate and the earlier elements, the advice, are certain symbols and
numbers. The symbols '*Already and '*Consecutive may appear among the advice,
up to once each and independently of other advice. The symbol '*Priority may
appear up to once among the advice, independently of *Already and *Consecutive
advice; but if '*Priority appears, it must be followed immediately by another
symbol or number as explained in the next subsection listing in this section
under Desperation, Priorities, and Urgency.

Only extensive preconditions, not intensives, may have *Already or
*Consecutive advice. If a precondition has *Already advice, then when the
production is used in an expansion and the precondition predicate is placed
into a blank node, that blank node is not allowed to be expanded itself. It
must be tied in or, if the precondition is a negation, turned into a phantom
without being tied in.
is being considered as an expansion alternative, a crude check is made to see
if there is any other assertion for the *Already precondition to tie in to,
and if this crude check indicates that there is none, the production does not
emerge as an alternative. This advice is often used around a precondition of
which the purpose is to instantiate some variable by tying in to an assertion
somewhere else in which there is a constant in the corresponding position. An
example from the blocks world knowledge base is

When a production with a positive *Already precondEtion

(*Already (ON ?upperblock ?lowerblock))

in the preconditions to the UNSTACK action.

If exactly one precondition of a production has *Consecutive advice, the
activity represented by each use of the production is constrained to begin as
soon as the corresponding instance of that precondition is established. If
there are other preconditions, without *Consecutive advice, they would have to
be established at the same time as, or before, the *Consecutive precondition.
If more than one precondition of a production has *Consecutive advice, the
planner starts trying to plan so that all of the *Consecutive preconditions

4-15

will be achieved simultaneously; all the other (if any) preconditions will be
achieved at the same time as, or earlier than, the *Consecutive ones; and the
activity represented by the production will begin as soon as the *Consecutive
preconditions are established. However, if necessary, the planner may "break
consecutive bonds'' until the activity represented by the production follows
consecutively after only one of the *Consecutive preconditions (and non-
consecutively after the rest of them).

G. DESPERATION, PRIORITIES, AND URGENCY

There is a method enabling the knowledge base designer and user to
direct the planner to "break the rules" by ignoring selected preconditions if
the situation is sufficiently desperate. The planner determines whether to
ignore a precondition by comparing that precondition's priority with the
desperation index.

A precondition in a production in the knowledge base has its priority
explicitly declared if it comes with *Priority advice.
consists of the symbol '*Priority, followed by another number or symbol chosen
from among 1, 2, 3 , 4, 5 , 'XO, 'Xl, 'X2, 'X3, 'X4, '00, '01, '02, '03, '04,
appearing in the advice on the precondition.
*Priority advice, its priority defaults to five. Unlike *Already and
*Consecutive advice, which are meaningful only for extensive preconditions,
*Priority advice- can advise both intensive and extensive preconditions.

The *Priority advice

If a precondition has no

The desperation index may vary during construction of a single plan.
Unless the user interrupts the program and forcibly resets the desperation
index, the desperation index is always an integer from zero through four, and
is determined by the major goal on which the planner is currently working.
that goal had a *Priority or *Urgency declared in the problem file (see THE
PROBLEM FILE, Section V, for the form of such a declaration), the desperation
index is the *Urgency or (five minus the *Priority). If the goal itself had
no *Priority or *Urgency, but its package did (see THE PROBLEM FILE
Section V), the desperation index is the package's *Urgency or (five minus the
package's *Priority). Otherwise, the desperation index is the value of the
PROG variable 'DefaultDesperationIndex, f o r which the user is queried at the
beginning of each run of the planner. (The query's prompt is
"DesperationIndex: " instead of "DefaultDesperationIndex: ' I .

If

Whenever a production is used in an expansion, each of its preconditions
has its priority compared with the desperation index.
whether the precondition is active, i.e., whether it will be entered in a new
blank node (for an extensive precondition), or it will become a constraint on
its variables (for an intensive precondition), or it will be ignored. For a
precondition with numerical priority, including the default five, the
precondition is active if its priority is greater than the desperation index.
(As the desperation-index is always less than five, preconditions with the
default priority are always active.) If the priority of the precondition is
'00, '01, '02, '03, or '04, the precondition is active if, and only if, the
digit in the priority is less than or equal to the desperation index; this is
the Opposite (The initial "0" in these priority designations stands for

The comparison determines

4-16

"opposite.") of the comparison that was made for numerical priorities.
0 priority has been used when there was one intensive precondition to be
used in case of low desperation index, and another weaker intensive
precondition to be used,ia case of higher desperation index; and it was
desired that the planner have only one of these preconditions active for each
use of the production. The strong precondition got a numerical priority, and
the weaker one got an 0 priority.

(An

The preconditions were

(*Priority 4 (Cwgeq ?A (SIGINT.RESERVE.PLUS.2)))

and

(*Priority 04 (Cwgeq ?A (2)))

The variable ' ?A represented the vector containing the number of Sight planes
present before the action of sending a pair of them on a mission. When the
desperation index was 0 , 1, 2, or 3, the first precondition would be active
and the second one would not, and the planner could not schedule a Sight
mission to be launched when there were fewer than (SIGINT.RESERVE.PLUS.2)
Sigint planes present. When the desperation index was four, the second
precondition would be active and the first would not, so the planner could
conceivably schedule a Sigint mission to be launched when there were fewer
than (SIGINT.RESERVE.PLUS.2) planes, provided that there were at least (2) .
SIGINT.RESERVE.PLUS.2 always returned a vector that was Cwgeq than (21, so
(Cwgeq ?A (SIGINT.RESERVE.PLUS.2)) logically entailed (Cwgeq ?A (211.1 If the
priority of the precondition is 'XO, 'Xl, 'X2, ' X 3 , or ' X 4 , the precondition
is active if, and only if, the digit in the priority is Exactly (The initial
"X" in these priority designations stands for "exact.") equal to the
desperation index.

H. *GOAL ASSERTIONS

A production may have *Goal assertions among its consequent assertions.
A *Goal assertion resembles a *Goal precondition in form, i.e., it has the form

(*Goal <predicate>)

Unlike *Goal preconditions, in which the <predicate> must be atomic, a
*Goal assertion may have a <predicate> which is a negation.
<predicate> must be extensive. A *Goal assertion does not have the same
effect as a *Goal precondition.

The

When a production with *Goal assertions is used in an expansion, each
*Goal assertion is instantiated with the same substitution used for the rest
of the production's antecedent and consequent assertions. The result of
instantiating the <predicate> of each *Goal assertion becomes a new goal
in a new blank node, which is the same thing that happens to the production's
extensive preconditions. However, the blank nodes arising from the
preconditions are ordered before the node that was expanded with the
production, while the blank nodes arising from the *Goal assertions come after
the newly-expanded node. Not only that, but they are made to follow the newly
expanded node consecutively. The *Goal assertions are removed from the
Assertions field of the newly expanded node.

4-1 7

For instance, one knowledge base contains the following production.

(DECOMMIT.PLANE ForwardEvent
((LANDED ?Mission)
* (COMMITTED ?Plane ?Mission))
--->
((NOT (COMMITTED ?Plane ?Mission))
(*Goal (THROUGH.MAINTENANCE ?Plane)) 1)

When the partial plan contains a pair of assertions such as
(LANDED SIGINT.0137) and (COMMITTED SigintPlanel SIGINT.0137), the
ForwardEvent fires forward. The ForwardEvent establishes the assertion
(NOT (COMMITTED SigintPlanel SIGINT.0137)), to become true at a later time
than the already-present (COMMITTED SigintPlanel SIGINT.0137). It also sets
the new goal (THROUGH.MAINTENANCE SigintPlanel), which the planner will have
to plan to achieve after the finish time of this instance of the ForwardEvent.

The *Goal assertions of a production become new goals regardless of
whether the production is used in forward or backward chaining.
true even if the production is a scheduled event that has no preconditions so
that it is entered in the plan before the planner starts chaining either way.

The same is

I. NONCONSUMABLE RESOURCES, OR CONSERVED RESOURCES

A nonconsumable resource is a resource of which some quantity must be
"temporarily borrowed" or "committed" for the performance of some activity,
and may be returned to the "available pool" when the activity is finished.
There is usually an upper limit on the available amount of each nonconsumable
resource, so that there is also a limit on the number of activities requiring
that resource that can occur simultaneously. Some examples that are worth
considering in household domains are electric power and water pressure. The
total available amount of electric power is limited by the fuse capacity. If
many electrical appliances are running and using a large amount of power,
turning on one more may cause a fuse to blow.
one more appliance is necessary, it must be scheduled at a time when some of
the other appliances can be turned off. Water pressure to a house is also
limited. In some houses one cannot obtain any running water in the bathroom
if the washing machine is operating. If it is necessary to have the washing
machine running for one activity, and to have running water in the bathroom
for another, the activities cannot both go on at the same time.

In that case, if use of that

Special code has been inserted into SWITCH to enable it to deal with
nonconsumable resources. (Indeed, this code is the major difference between
SWITCH and the version of DEVISER from which it came.) The code maintains
sequences of nodes containing assertions of what amount of each nonconsumable
resource is uncommitted. Any activity that changes the uncommitted amount of
a nonconsumable resource must be placed into the corresponding sequence of
nodes, and if it has gone into the middle of the sequence, the change in the
uncommitted amount must propagate to the later nodes in the sequence.

4-18

I

The nonconsumable-resource-sequence code was designed with the following
sort of knowledge base in mind.
goals or subgoals require some "appliances" to be "on". If such an action is
used, the facts that the required appliances are on would be preconditions of
it. If the appliances are already on, the preconditions could be tied in. If,
however, not all of the appliances are already on, some of them must be made
to be on, i.e., they must be "turned on." "Turning on" an appliance requires
committing some quantity or quantities of one or more nonconsumable resources
to it. The facts that the required amounts must be available, and that the
turn-on action changes the available amounts, are expressed as preconditions
and assertions of the productions representing the turn-on actions.

Some actions that achieve possibly desired

I powered) washing machine, and people using screwdrivers were the appliances in
some domain, the screwdrivers might be modeled as a nonconsumable resource,

For example, suppose that the only nonconsumable resource with which we
are concerned is DC electric power, and some of our goals are to watch certain
television shows on a television which requires 10 amperes to operate. The
action of watching television would have as a precondition the fact that the
television be on, which we will represent by the predicate (ON TV).
relation ON does not mean the same thing that it did in the blocks world
knowledge base.)
the value of the functional relation AVAILABLE.AMPS. The production
representing the act of turning on the television would resemble this:

(Now the

We will represent the available amount of electric power as

(TURN.ON.TV Action
((*Already (AVAILABLE .AMPS ?pre. turn. on.amps))
(Cwgeq ?pre.turn.on.amps (10))
(ValueOf ?post.turn.on.amps (Vdifference ?pre.turn.on.amps (10)))
(NOT (ON T V)))

--->
((ON TV)
(AVAILABLE.AMPS ?post.turn.on.amps)))

4-1 9

of the nonconsumable resource types, but if there is an acceptable partition
of them into a larger number of smaller groups, it may be advantageous to
divide them that way. In the example illustrated by the above production, the
only nonconsumable resource under consideration is AVAILABLE.AMPS, so'there is
only one entry in the vector.

Another important aspect of nonconsumable-resource-changing productions,
illustrated by the above example, is the lack of a duration declaration. The
duration of the example will default to zero.
duration changes the uncommitted value of some group of nonconsumable resource
types, and is included in the schedule, no other activity that changes the
uncommitted levels of anything in that group can happen during the first
activity's duration. Use positive-duration turn-ons and turn-offs only at
your own r i s k .

If a production with positive

Also, the precondition expressing the available amount of the non-
consumable resource has *Already advice. (See Advice, previously discussed
in this section.)
mechanisms of the planner from expanding nonconsumable-resource precondition
subgoals. SWITCH contains special-purpose expansion procedures to expand such
preconditions in case none of the possible tie-ins meet the Cwgeq constraint.
If there is any other constraint on the variable which is the value of the
nonconsumable-resource functional relation, and none of the possible tie-ins
meet the other constraint, the planner probably would not succeed in finding a
solution. Also, if it is desired that different Cwgeq constraints be in
effect at different desperation levels, the *Priority's of the Cwgeq
preconditions in the knowledge base must be arranged so that no more than one
of them is active at each desperation level, even if some of them logically
imply some others. (See Desperation, Priorities, and Urgency previously
discussed in this section.)

This is required to be there to stop the regular expansion

Each nonconsumable-resource-group-level-expressing relation name must be
declared in the productions file along with the names of the resources in that
group. Each such relation also must be declared to be a nullary function.
(See The Rest of the Productions File in the next subsection for the forms
of such declarations.)

(In the knowledge base from which the above production was drawn,
'ValueOf is the assignment intensive; 'AVAILABLE.AMPS is a nullary function
and is declared to be the name of a group of nonconsumable resource types with
a single type in the group; 'ON is the OnName; and neither 'PRE nor 'POST is a
type of typed variables. See Assignment and Functions, both listed in
Section 111, and The Rest of the Productions File in the next subsection,
for more explanation of those terms.)

Once an appliance is on, the planner leaves it on for possible later use
unless there is an explicit goal or subgoal that it be off later, or its
turn-off action is scheduled to free resources that are needed for other
functions. The form of a turn-off production is illustrated by:

4-20

(TURN.OFF.TV Action
((ON TV)
(*Already (AVAILABLE.AMPS ?pre.turn.off.amps))
(Valueof ?post.turn.off.amps (Vsum ?pre.turn.off.amps (10))))

--->
((NOT ON TV))
(AVAILABLE. AMPS ? pos t . turn. off . amps)))

Any production that refers to the available quantities of any group of
nonconsumable resources must have both a precondition and a consequent
assertion stating the available quantities of the resources in that group.
The precondition states the available quantities before the occurrence of an
instance of that production, and the consequent assertion states the available
quantities after the occurrence. If the production is to be used only in
backward chaining, as the TURN.ON.TV and TURN.0FF.W examples are used above,
it may be written in a form similar to theirs. The precondition stating the
available quantities should have *Already advice, and the available quantiti,es
vector in it should be a variable. That variable should appear nowhere else
in the production except in intensive preconditions: An assignment to the
variable that represents the available quantities after' the production, and an
optional

.

(Cwgeq <initially available quantities> <something else>)

The variable that represents the quantities available after the production
should appear only in the consequent assertion asserting the available
quantities and in the assignment precondition.

If the production contained some other constraint on the variable
representing the initially available quantities, then the planner, when
considering or attempting a tie-in of the precondition stating the initially
available quantities, would probably be able to evaluate the constraint,
decide whether the tie-in satisfied it, and proceed if so. However, when a
potential tie-in of an initially-available-quantity precondition does not
satisfy the constraints, SWITCH assumes that the offense is that there is not
enough available quantity of some resource(s) to satisfy a Cwgeq constraint,
and tries to schedule turn-offs to increase the available quantity. If the
offense also involves some other constraint, the turn-offs might not remedy
it. If the offense involves only some other constraint, and not a Cwgeq
constraint at all, the planner will probably not even try any turn-offs, but
just abort and try another tie-in.

When considering turn-off alternatives, the planner expects the turn-of f
productions to be in a certain form to enable it to determine whether or not a
turn-off production actually frees any useful resources. It looks in each

vector is one variable, and that the finally available quantity vector is a
second variable, and for an assignment intensive relating the two variables by
assigning to one the result of Vsum or Vdifference of the other and some other
vector that is independent of those variables. It is the other vector that
the planner uses to determine whether the potential turn-off will actually
free any useful resources. If there is no such assignment (as would be the
case if, for instance, the amounts of resources available after the turn-off

I turn-off production for the assertions that the initially available quantity

4-21

were not such a simple function of the amounts available before it), the
planner does not recognize that the turn-off frees any resources and,
therefore, will not use it to try to increase the available amounts of any
resources.

It is anticipated that most activities that change the available amounts
of nonconsumable resources in a group will do so by adding or subtracting a
vector that is independent of the vector of initially available amounts
(although it may depend on other things, such as a specific appliance that is
being turned on or off). However, if the description of something in the
world requires a production that asserts that the available quantities vector
is changed from the initial value to a value that is utterly independent of
the initial value, that can be done, too. In the TURN.0N.W example above,
the finally available quantities vector differed from the initially available
quantities vector by the fixed (l o) , and the assignment

(ValueOf ?post. turn.on.amps (Vdifference ?pre. turn.on.amps (10) 1)

expressed that fact. I f , instead, the turn-on were to leave, say, no
AVAILABLE.AMPS no matter how many were available just before the turn-on, we
would express that fact by the assignment

(ValueOf ?post.turn.on.amps (ConstantNCRValueHack ?pre.turn.on.amps (0))).

ConstantNCRValueHack is a macro that ignores its first argument and returns its
second argument (sometimes putting a QUOTE around the second argument).
necessary for the variable representing the initially available quantities
vector to appear in the assignment (in this case, it appears as the ignored
first argument to ConstantNCRValueHack) to permit the nonconsumable-resource-
sequence-maintaining procedures in SWITCH to take over before the contradiction-
resolution procedures identify the finally-available-quantities vector.

It is

No ForwardEvent or Event that will be expanded forward should mention
nonconsumable resources. However, if an accurate description of the world
seems to require a nonconsumable-resource-changing forward event, that may
possibly be handled by the following ruse that essentially changes the
direction of chaining. Imagine writing the production as if it would be
forward-chained on. Choose a dummy variable that does not appear in the
imagined version, and a dummy relation name that does not appear anywhere else
in the knowledge base. These dummies will link the members of a pair of
productions into which the imagined ForwardEvent is divided. In the first

to nonconsumable resources, and an assignment of the form
, member, which is a ForwardEvent, go all preconditions, except those pertaining

(<Equalsign> <dummy variable> (gensym))

as preconditions. (The Lisp function, gensym, generates a unique symbol each
time it is called.) The consequent has just a single assertion, and this
assertion is of the form

(*Goal (<dummy relation> <dummy variable>))
The preconditions of the second member, which will be backward-chained on, are
the rest of the preconditions of the imagined ForwardEvent and

(*Goal (<dummy relation> <dummy variable>))

4-22

The consequent of the second member consists of the consequent of the imagined
ForwardEvent and

(<dummy relation> < d m y variable>)

For instance, suppose that there were an electric-company spy who
monitored the TV in our example.
TV, the spy will instantly report that situation to the electric company,
which will then immediately confiscate five of our AVAILABLE.AMPS. We might
think of modeling this process by a ForwardEvent such as the following:

When we have watched MASH and turned off the

(LOSE.EXTRA.POWER ForwardEvent
((WATCHED MASH)
(NOT (ON TV))
(*Already (AVAILABLE.AMPS ?pre.confiscation.amps))
(Valueof ?post.confiscation.amps

(Vdifference ?pre.confiscation.amps (5))))
--->
((AVAILABLE.AMPS ?post .confiscation.amps)))

However, ForwardEvents and nonconsumable resources don't mix, so we would try
to apply the above ruse to that imaginary ForwardEvent and obtain two
productions resembling the following:

(LOSE.EXTRA.POWER.1 ForwardEvent
((WATCHED MASH)
(NOT (ON TV))
(ValueOf ?m (Gensym) 1)

--->
((*Goal (LOSE.EXTRA.POWER ?rn))))

(LOSE.EXTRA.POWER.2 Event
((*Already (AVAILABLE.AMPS ?pre.confiscation.amps))

(Vdifference ?pre.confiscation.amps (5)))
(Valueof ?post.confiscation.arnps

(*Goal (LOSE.EXTRA.POWER ?rn)))
--->
((AVAILABLE .AMPS ?post .conf iscation.amps)
(LOSE.EXTRA.POWER ?m)))

This way, if the planner schedules actions that result in (WATCHED MASH)
and (NOT (ON TV)) being simultaneously true, it will chain forward on the first
production, LOSE.EXTRA.POWER.1. The *Goal assertion of that ForwardEvent will
cause a new blank node to arise, ordered after the nodes asserting
(NOT (ON TV)) and (WATCHED MASH). The subgoal in this new blank node will be
similar to (LOSE.EXTRA.POWER #:G0023). If LOSE.EXTRA.POWER is truly a dummy
relation that does not appear anywhere else in the knowledge base, the planner
will have no way to achieve this subgoal except to expand backwards with
LOSE.EXTRA.POWER.2. The nonconsumable-resource-sequence-maintaining
procedures take over and do the right thing because of the nonconsumable-
resource predicates in the antecedent and consequent of LOSE.EXTRA.POWER.2.

4-23

Scheduled events affecting the available quantities of nonconsumable
resources are allowed, if they follow the form described above (stating the
available quantities before and after each event and stating the assignment
that relates the finally available quantities to the initially available
quantities).
Scheduled Event, because such a scheduled event has preconditions, it will be
entered in the plan to achieve a corresponding "phantom goal".

As noted earlier in this section under Production Pseudo-Type:

If a planning problem involves nonconsumable resources, the available-
quantities vector of each relevant group of nonconsumable resources as of the
start time of the plan must be stated in an assertion in the Initialstate
declaration in the problem file. For instance, in a problem using the
knowledge base from which the TURN.ON.TV and TURN.0FF.W examples above were
drawn, the initial state might include the predicate

(AVAILABLE.AMPS (15))

No goal should be a nonconsumable-resources predicate.
any wish. (Wishes are "optional goals"; see THE PROBLEM FILE, Section V.)
No production should have a *Goal assertion that is a nonconsumable-resources
predicate.

Neither should

See NCRUsers (Nonconsumable Resource Users) under The Rest of the
Productions File in the next subsection for information on a feature that
lets SWITCH wait until it has a good idea about when appliances have to be on
before it has to decide what to turn off to free resources.

J. THE REST OF THE PRODUCTIONS FILE

The productions file is a text file (or edit buffer) of s-expressions.
The s-expressions in it will be read, one by one, by the function read,
until the symbol 'STOP is read in as one of the s-expressions (or the end of
the file is encountered without 'STOP, which will probably cause an error).
After the reading is done, various things will be done with the s-expressions
from the file.

The first s-expression should be a symbol. The program uses this symbol
to find the domain functions file; it looks on the subdirectory represented by
the logical pathname fragment, "SWITCH-H0ST:SWITCH;KNOWLEDGE-BASES;" for a
file of which the name is the result of concatenating T N S " onto the end of
the symbol, and the extension is "BIN", "" , or "LISP". It loads the BIN file
if it finds it; it loads the null-extension file if it finds that, but no BIN
file; it loads the LISP file if it finds that, but no BIN or null-extension
file; otherwise, it does not load any domain functions file.

The remaining s-expressions in the productions file, except for the
concluding 'STOP, should be lists. Any of these lists beginning with '* is
ignored; it is a comment in the file. (In fact, the input parser ignores as
comments all lists beginning with ' * at many levels in the file. For this
reason, *$ or times should be used instead of * in the productions file
whenever it is necessary to represent a multiplication operation.)' The rest

4-24

of the lists should be declarations of the production definitions, the
consumable resources, the variable types, etc. They may come in any order,
and any of them may be omitted (with some exceptions, as will be pointed out
in the discussions which follow). The form of the declaration of the
production definitions has been described at the beginning of this section.
The other declarations should be as follows:

1. Consumable Resources

(Consumables (<resource name> <limit>)
(<resource name> <limit>) --1

The <resource name>s should be distinct symbols and the <limits>s
should be numbers. The planner will not produce a plan that consumes more than
the limit of any consumable resource. See also Consume under Intensives
stated earlier in this section, page 4-10.

2. Functions

(Functions (<name> <arity>) (<name> <arity>) --)

See the subsection Functions under KNOWLEDGE BASE LANGUAGE,
Section III, page 3-3. This declaration should not be omitted if the
Nonconsumables declaration is included; see Nonconsumable Resources, or
Conserved Resources, later in this section.

3. Measurable Relations

(Measurables <declaration> <declaration> --)

4-25

meet to be sent as a prediction, currently include (1) the condition that the
node containing it must not be a phantom node, and (2) detailed conditions about
whether or not there are later activities depending on the assertion and/or on
other assertions of the same node. These conditions will almost certainly have
to be changed in any release of the discrepancy replanning program.)

4 . NCRUsers (NonConsumable Resource Users)

(NCRUsers (<appliance> <predicate>)
(<appliance> <predicate>) --)

This declaration causes the planner to postpone accounting for
nonconsumable resources until it has nothing else to do. By that time it
should know what NCR users have to be on, when, how often, and for how long,
etc., so it can make an intelligent choice of what to turn off, if it needs to
turn some appliance off to free resources.
<appliance> in the declaration, along with the <predicate> that asserts
that the <appliance> is "completely on" [whether that be (ON
<appliance>), (WARMED.UP <appliance>), or whatever]. For instance, one
knowledge base contains the NCRUsers declaration

Each NCR user should appear as an

(NCRUSERS (ARM.RAISER (WARMED.UP ARM.RAISER))
(BAY.DOOR.MOTOR (WARMED.UP BAY.DOOR.MOTOR))
(ELBOW.BENDER (WARMED.UP ELBOW.BENDER))
(SHOULDER.ELEVATOR (WARMED.UP SHOULDER.ELEVAT0R))
(SHOULDER.TURNER (WARMED.UP SHOULDER.TURNER))).

When the planner encounters a blank node in which the assertion matches one of
the <predicate%, it postpones expansion of that blank node and moves on to
the next blank node, unless every remaining blank node also contains an assertion
matching one of the <predicate>s.
planner sorts the remaining blank nodes by latest start times and resumes
planning without any more postponment (unless it is forced to backtrack to an
earlier stage in which there were more blank nodes with assertions that did not
match the <predicate>s, in which case it would revert to postponment again).

When that "unless" condition is true, the

5 . NextPass

(Nextpass <function of one argument>)

The function may be a symbol which is the name of a function of one
argument, or a (LAMBDA (<argument>) . <forms>) expression. If a
NextPass declaration is made, the supplied function will be called each time
the planner finds that it has a solution, i.e., that there are no more blank
nodes, no contradictions to be placed into time order, and no Events or
ForwardEvents waiting to fire. The purpose of the function is to scan the
plan to see if it needs to direct the planner to do any more work (make
another pass at the plan), and if so, to make at least one change to the
internal representation of the plan so that the planner actually will do more
work. It is important that the function return nil if it finds that no more

4-26

passes are needed and return a non-nil value otherwise. At present, there
are no utility functions for writing the definition of the NextPass function
to make changes to the internal representation of the plan. Thus, the
knowledge base designer who wants to use the NextPass feature will have to
have a good understanding of the internal workings of the planner. The
argument given to the function will be an integer that is initially 1, is
incremented each time the function returns a non-nil value, and is
decremented each time the planner backtracks over an occasion when it was
incremented. If the knowledge base designer wants a NextPass function but has
no use for this number, the argument in the NextPass definition can be
ignore.
overwritten from the problem file. If it has been overwritten, the NextPass
function supplied in the problem file will be called each time the planner
thinks it has a solution, and the NextPass function from the productions file
will not be called.) (Note also that if Wishes are present in the problem
file, the NextPass function will be called after the planner has made a plan
to achieve the Goals, before it starts to consider the Wishes. Then, for each
wish package, if the planner succeeds in adding the wish package to the plan,
it calls NextPass again to see if it has to do more work on the plan that
includes that wish package, before concluding that it is done with that wish
package. See Wishes under TEE PROBLEM FILE, Section V.)

(Note that the productions file declaration of NextPass can be

6 . Nonconsumable Resources or Conserved Resources

(Nonconsumables (<symbol> <list>) (<symbol> <list>) --)

For instance:

(Nonconsumables (1MINT.BIRDS.ON.GROUND (1MINT.BIRDS))
(SIGINT.BIRDS.ON.GR0UND (SIGINT.BIRDS))
(SUR.BIRDS.ON.GR0UND (SLAR.BIRDS)))

Each <symbol> is a relation name, and should also be declared a nullary
function in the Functions declaration.
its relation is viewed as asserting the uncommitted amounts of the resources
in a group. The corresponding <list> should be a list of symbols which
are the names of the resources in the group.
length of the <list> while actually making the plan, referring to the
actual elements only when displaying the finished plan.)
example, each of IMINT.BIRDS.ON.GROUND, SIGINT.BIRDS.ON.GROUND, and
SLAR.BIRDS.ON.GROUND is a group of nonconsumable resource types, with a single
type of resource in each group. Each is a nullary function, i.e., a unary
relation. As a relation, each takes arguments that are vectors of a single
number, because there is a single type of resource in its group. At the end
of the display of the plan, the planner displays an announcement of surplus
nonconsumables, which, for each resource type, is the smallest uncommitted
amount of that type at any time during the plan. This is when the planner
uses the names gf the individual types.

A predicate with the <symbol> as

(The planner uses only the

In the above

4-27

7 . Odame

(Mame) or (OnName nil) or (Oflame <symbol>)

If the first or second form is used, the effect is the same as if the
declaration had been omitted. If the third form is used, the <symbol>
becomes the relation of which the negation, appearing in the consequent of a
production, signals SWITCH that that production is worth using as an
alternative to free resources. That is, a positive assertion with the OnName
as its relation asserts that some NCR user is on, and a negative assertion
with the OnName as its relation asserts that some NCR user is not on. A
production that achieves a negative OnName assertion probably does so by
turning off some NCR user, so it probably frees some resources. (If the
declaration is omitted, the planner calls gensym to obtain a symbol to use
as the OnName. If the knowledge base designer uses any relation names that
resemble gensymed symbols, they may confuse the planner.)

8. Precondition Priorities

(Priorities <relation name> <relation name> --)

Recall that when the planner does an expansion in backward chaining, the
extensive preconditions of the production used in the expansion are copied,
instantiated, and placed into new blank nodes, which represent new subgoals
that the planner must consider (tie in or expand). If a Priorities
declaration is present in the productions file, then the planner will consider
these new blank nodes in the order induced by the order of their relations in
that declaration. First it will consider those (if any) where the relation is
first in the Priorities declaration, then it will consider those (if any)
where the relation is second in the Priorities declaration, etc. It leaves
until last those with relations that do not appear at all in the Priorities
declaration. (Because the planner is so sensitive to the order in which
preconditions come up for consideration, and the optimum order is rarely
dependent on the relations alone, few knowledge bases contain Priorities
declarations.)

. 9 . PROG Variables

(ProgVars <var> <var> --)

Each <var> is either a symbol or a two-element 1,st in which the f,rst
element is a symbol. The <var>, or its first element, whichever is a symbol,
will be bound while the planner is running, and its value or unbound state that
existed before the planner was started up will be restored when the planner exits
(normally or via [Abort]). The <var>s are initialized as in a Lisp prog*:
if <var> is a symbol it is initialized to nil, and if <var> is a list
then the first element of <var> is initialized to the result of evaling the
second element. The initializing is done sequentially. The knowledge base
designer should take care to avoid using any ProgVars that are special to the
program!

4-28

10. Time Parameters

(Timeparameters (<relation name> . <list of numbers>) --)
The <list of numbers> should be a list of positive integers which

are the numbers of those arguments to the relation that are times. (The number
of the first argument is 1, the number of the second argument is 2, etc.) On
various occasions while the planner is running, it displays predicates, and if
it has to display an assertion in which the relation is the <relation name>
in one of the lists in the Timeparameters declaration, it displays each
time-argument in that assertion in hh:mm:ss.decimal form instead of displaying
it as a number of seconds. Note that the <relation name> in the
declaration does not have to be an actual relation name for the declaration to
have an effect. If the planner is displaying in "fancy" mode and has to
display a list in which the car is one of the <relation name>s, the time
"arguments" will be displayed in hh:mm:ss.decimal form, regardless of whether
that list is a predicate or an element of some other list that is being
displayed. For instance, if the Timeparameters declaration were

(Timeparameters (SURVEY 2 4))

then when the planner was displaying in fancy form, it would display

(DATA.READY.FOR.REQUESTER SA EMITTERS
(A0 A1 A2 A3 A4 A5)
(SURVEY BETWEEN 10:OO:OO.O AND 12:OO:OO.O)
(RANGE (0 200)

FREQUENCIES (80 100)
DF (80 100)
DEADLINE 5 7600))

instead of
(DATA.READY.FOR.REQUESTER SA EMITTERS

(A0 A 1 A2 A3 A4 A 5)
(SURVEY BETWEEN 36000 AND 43200)
(RANGE (0 200)

FREQUENCIES (80 100)
DF (80 100)
DEADLINE 57600))

11. Typed Variables

(Types (<symbol> . <list>) (<symbol> . <list>) --)

In each (<symbol> . <list>) in this declaration, the <symbol>
should be a symbol, and its pname should not include a period. The <symbol>
becomes a type, and the <list> becomes the list of allowed instantiations for
typed variables of that type.. A typed variable is one that has its pname
beginning with a question mark followed by (a substring equal to the pname of) a
type followed by a period. When the planner is considering alternatives that
involve instantiating a typed variable, it will not instantiate that variable
with any non-variable that is not a memq of the list of allowed instantiations.
For instance, if '(SUIT CLUBS DIAMONDS HEARTS SPADES) were a member of the

4-29

declaration, the planner would not be able to instantiate any of the variables
'?suit.yourself, '?suit.of.clothes-4, '?suit.led, etc., with any non-variable
value other than 'CLUBS, 'DIAMONDS, 'HEARTS, or 'SPADES. The planner does not
look to the Types declaration for a list of suggested instantiations for a
variable; rather, it uses the Types declaration to rule out tentative
instantiations that it has already found. It is not a good idea to have
'FORALL as a type. Any typed variable of that type would have a pname
beginning with "?forall.", and this would lead to confusion with the
convention for universally quantified variables.

12. Wipeout

(Wipeout <declaration> <declaration> --)

Each <declaration> has one of two forms, (<relation name> <form>)
o r (NOT <relation name> <form>). The Wipeout declaration controls
retention of true facts in the initial state for replans. For two
not-necessarily-distinct facts, Factl and Fact2, which are both true at the
replan's start time, we say that Factl wipes out Fact2 if the truth of Factl
makes the presence of Fact2 in the replan initial state unnecessary. For
instance, often knowledge bases are set up so that the achieved major goals
are irrelevant for future planning. In this case the major goal should wipe
itself out. When the replanning input generator is constructing the initial
state for replanning, it collects all assertions achieved and not contradicted
by the partial execution of the old plan until the replan start time, and then
it sees which of these wipe out themselves or others. To the replanning input
generator, Factl wipes out Fact2 if, and only if, all of the following
conditions hold:
that is in progress at the replan start time directly depends on Fact2;
(3) the node establishing Factl is the same as, or sequentially ordered after,
the node establishing Fact2; (4) Fact2 is not one of the old plan's major
goals that has been established, but has not lasted for its desired duration
by the replan start time; nor is Fact2 necessary to satisfy a goal after the
replan start time that was created from a *Goal assertion in the old plan;
and, finally, (5) the <form> in the Wipeout declaration corresponding to
the relation name of Factl if Factl is not a negation, or to NOT and the
relation name of Factl if it is, evaluates to a non-nil value. The
<form> may contain the free variables 'Literall, 'Literal2, 'Predl, and
'Pred2. At evaluation time they will be bound, respectively, to the
LiteralTrays in the old plan containing Factl and Fact2, and to the contents
of their respective Predicate fields.

(1) Fact2 has not already been wiped out; (2) no activity

K. THE SCHEDULED EVENTS FILE

The scheduled events file is another text file (or edit buffer) of
s-expressions. The planner does not require a scheduled events file; if there
is none, type NIL and a carriage return in answer to the question, "In what
file are the scheduled events?" that is asked near the beginning of the
execution of Runaround.

4-30

If there i a scheduled events file, only the first s-expression in it
is read (with the Lisp function read), and that is expected to be a list in
which the first element is the symbol 'ScheduledEvents and the remaining
elements, if any, are production s-expressions.

1

4-31

SECTION V

t
I
l

or
I

THE PROBLEM FILE

I (*Urgency Cinteger from 0 through 4>)

The problem file is still another text file (or edit buffer) of
s-expressions.
until the symbol 'STOP is read as one of them (or end of file is encountered
without 'STOP, which will probably cause an error).
be done with the s-expressions that were read in.

They will be read one at a time, by the Lisp function read,

Then various things will

Once it has finished reading in the problem file, the planner displays
(The first PROBLEM: followed by the first s-expression in the problem file.

s-expression is usually a symbol.) If the replanning input generator later
makes a rerun problem file, it will write that same first s-expression into
the rerun problem file as its first s-expression.

The planner expects the rest of the s-expressions in the problem file
It ignores any of these lists in (except for the final 'STOP) to be lists.

which the first element is 'f; that list was a comment in the file. The
rest of the lists are declarations of the initial state, the goals, the next
pass procedure, and the wishes. They may come in any order, and any of them
except the Goals may be omitted. The forms of the declarations are as follows.

A. GOALS

(Goals <goal package> <goal package> --)

Each <goal package> is a list of goals, possibly with a window,
duration, and/or *Priority or *Urgency declaration included.
predicate, atomic or negated, in the knowledge base language, or it may be a
list in one of the forms

A goal may be a

(*Priority Cinteger from 1 through 5> <predicate>)

or

(*Urgency <integer from 0 through 4> <predicate>)

A window or duration declaration takes the same form as a window or
duration option in a production s-expression; see PRODUCTIONS AND SCHEDULED
EVENTS, Section IV. If no window is declared for the package, the package
will receive the default window representing "any time after the plan starts".
If no duration is declared for the package, it will receive the default
duration 0. A *Priority or *Urgency declaration for the package is a list in
one of the forms

(*Priority <integer from 1 through 5>)

5-1

The *Priority or *Urgency declarations determine the desperation index for
each goal in the package.
the planner's decision to break rules (i.e., to ignore preconditions) to
achieve the goal.
PRODUCTIONS AND SCHEDULED EVWTS, Section IV-G, p. 4-10.) A l s o , the
desperation index of the goal may affect the planner's decision to skip the
goal.
list (*Priority <number> <predicate>)], its desperation index is the
difference between 5 and its *Priority; thus a "priority 1" goal gets a
desperation index of 4 , which is the highest possible desperation index. On a
scale of 1 to 5 , 1 is the highest priority. If an individual goal has a
*Urgency declaration, the desperation index of that goal will be its *Urgency.
On a scale of 0 to 4 , 4 is the highest urgency.
not have its own *Priority or *Urgency declaration (i.e., if it is just a
predicate), but the package has such a declaration, the goal's desperation
index will be the package's *Urgency, or five minus the package's *Priority.
If neither the goal nor its package has a *Urgency or *Priority declaration,
the goal's desperation index will be the value of the PROG variable
'DefaultDesperationIndex, for which the user is queried at the beginning of
each run of the planner. (The query appears as if it is for just the
DesperationIndex instead of the DefaultDesperationIndex.) The planner tries
to plan so that all of the predicates in the goal package are simultaneously
true for an interval of time beginning within the package's window and lasting
for the package's duration. (If the duration is 0, the planner still tries to
plan so that all of the predicates are simultaneously true for at least an
instant.) Unless so directed by other goal packages, or by subgoals that
arise during planning, it will not try t o plan so that the predicates are not
true outside the window or for longer than the duration. Some sample goal
packages, and their meanings, follow:

Recall that the desperation index of a goal affects

(See Desperation, Priorities, and Urgency under

If an individual goal has a *Priority declaration [i.e., if it is a

If an individual goal does

((WINDOW AT 8.) (ON A C) (ON B A) (ON D B))

from a blocks world problem file. The planner will try to plan so that at
time 8, block A will be on block C, block B will be on block A, and block D
will be on block B. It is possible that the plan will achieve these
conditions simultaneously before time 8, but in any case, they are to hold
true at time 8 .

((Window Before >17:00:00>)

(A0 A 1 A2 A3 A4 A5)
(SURVEY BETWEEN >10:00:00> AND >12:00:00>)

(DATA.READY.FOR.REQUESTER SA EMITTERS

(RANGE (0 200)
FREQUENCIES (80 100)
DF (80 100)
DEADLINE >16:00:00>)))

The planner will try to plan so that some time at or before 17:00:00, the
DATA.READY.FOR.REQUESTER assertion is true for at least an instant. The goal
package does not force the assertion to remain true, or force it to be
contradicted, after 17:OO:OO. In fact, the knowledge base used on this
problem contains no way to establish the negation of a DATA.READY.FOR.REQUESTER
assertion once it has become true.
achieve the goal, which will then remain true forever.

So, any solution to this goal package will

5-2

((Window Before >17:00:00>) (*Urgency 4)
(DATA.READY.FOR.REQUESTER SA EMITTERS

(A0 A1 A2 A 3 A4 A5)
(SURVEY BETWEEN >10:00:00> AND >12:00:00>)
(RANGE (0 200)

FREQUENCIES (80 100)
DF (80 100)
DEADLINE >16:00:00>)))

I (Wishes <goal package> <goal package> --1

This package is almost the same as the previous one. The difference is that
this one has a *Urgency. While the planner is working on planning to achieve
the goal in this package, the DesperationIndex will be 4 . This would make a
difference only if the DefaultDesperationIndex is not 4 , and there are
productions with preconditions with *Priority advice that are affected by the
DesperationIndex's being 4 , instead of being the same as the
DefaultDesperationIndex.

The form of a <goal package> here is the same as that under Goals
previously noted in this section, page 5-1. If there are wishes, then after
the planner has made a plan that achieves the goals, it considers the wish
packages one at a time. For each package, it tries to augment the existing

I

B. INITIAL STATE

I
I
i 5-3

(Initialstate <predicate> <predicate> --)

With one possible exception, each <predicate> is a predicate in the
knowledge base language, representing a fact that is true at the beginning of
plan execution. The possible exception is that there may be one
<predicate> of the form

(Time0 <time>)

where <time> is a time expressed as a base-10. number of seconds or a
(slashified) hh:m:ss.decimal symbol.
in the initial state, it informs the planner that the given <time> is the
beginning time of plan execution. If no such declaration is there, the
planner assumes that execution begins at time 0 . (Do not give a negative
start time.)

If such a Time0 declaration is present

C. NEXTPASS

(Nextpass <function of one argument>)

See NextPass under The Rest of the Productions File under
PRODUCTIONS AND SCHEDULED EVENTS, Section IV-J.

D. WISHES

plan so that, in addition to all of the goals and earlier wish packages being
true, the predicates in the current wish package will be simultaneously true
for a time interval beginning within the wish package's window and lasting as
long as the wish package's duration. If it succeeds, it moves on to the next
wish package, if any, or announces the solution if there are no more wish
packages. If it fails, it backtracks and undoes all of the changes it made to
the plan for this wish package, even if it succeeded in planning for the
achievement of some of the wishes in the package. It then moves on to the
next wish package, if any, or announces the solution if there are no more wish
packages. Note that, for each wish package, the planner will call the
NextPass function before it decides that it has succeeded in planning for that
wish package; also, it calls the NextPass function to decide that it has
finished planning for the goals, before it ever starts to consider the wishes.
See NextPass under The Rest of the Productions File under PRODUCTIONS AND
S O U L E D EVENTS, Section IV-J.

5-4

SECTION VI

THE DOMAIN FUNCTIONS FILE

As soon as the planner has read in the productions file, but before it
begins to process the production definitions and other declarations in that file,
the planner looks f o r the domain functions file. The first s-expression in the
productions file, which should be a symbol, is used to determine the name of the
domain functions file. The planner looks for a file in the subdirectory repre-
sented by the logical pathname fragment, "SWITCH-H0ST:SWITCH;KNOWLEDGE-BASES;",
of which the name is the result of concatenating "F'NS" onto the end of the first
symbol read from the productions file, and the extension is one of "BIN", "", or
"LISP". If it finds a BIN file it loads that. If it finds no BIN file but does
find a null-extension file it loads that. If it finds no BIN file or
null-extension file, but does find a LISP file, it loads that. If it finds none
of those files, it continues to read its other input without trying to load any
domain functions.

Usually a domain function will be called by the planner because it was
mentioned in an intensive precondition of a production that the planner is
using or considering for an expansion.
contains a production with the following as one of its intensive preconditions.:

For instance, one knowledge base

(ValueOf ?R (NCR.REQUIREMENT.OF ?Appliance))

In this knowledge base, NCR.REQUIREMENT.OF is a domain function that takes an
appliance name (one of a small set of symbols) as its argument and returns a
vector of nonconsumable-resource amounts that are committed when the appliance
is turned on, and freed when the appliance is turned off. Another production
in the same knowledge base has these among its intensive preconditions:

(GOOD.POSITION ?Theta1 ?Phi ?Psi)
(GOOD.POSITION ?Theta2 ?Phi ?Psi)
(GO0D.THETA.CHANGE ?Theta1 ?Theta2 ?Delta ?Phi ?Psi)

GOOD.POSITION and GOOD.THETA.CHANGE are domain functions and also intensive
relations.

The code in the planner which evaluates calls to domain functions
behaves very well if all of the arguments are numbers. However, if a domain
function does symbolic computation, you may find that the arguments that are
passed to the domain function have a different number of quotes in front of
them from what you thought were written in the productions.
experiment with putting in or removing quotes in the productions, and/or
defining some domain functions as macros which expand into calls to the "real"
functions with quoted arguments. (Actually, NCR.REQUIREMENT.OF, mentioned
above, is such a macro.) The same caveat applies to calls from intensives to
Lisp functions; in many knowledge bases there has been a need for such domain
functions as NCAR and NCDR, versions of car and cdr that do not evaluate
their arguments.

You should

6-1

The original purpose of the domain functions file was to provide a means
for the knowledge base designer to make sure that Lisp functions, that he/she
had defined to perform useful calculations for the planner, would be defined
when the planner ran. The function definitions appear in the domain functions
file as if it were a source code file. In addition to these useful functions,
the domain functions file can contain anything that any loadable file
contains. The use of the domain functions file to extend IntensiveRelations
has already been mentioned and, on occasion, the domain functions file has
been used to advise one of the planner's subroutines. If the knowledge base
designer uses the domain functions file to cause the planner to modify itself
while it is running, and conscientiously wishes to have the planner repair
itself when it exits, there is even a provision for doing this.
the forms

Commands of

(SETQ ScrubForms --)

(SETQ Scrub2Forms --)

(SETQ Scrub3Forms --)

may be included in the domain functions file. At the ends of various major
steps in the program, each element of one or more of ScrubForms, Scrub2Forms,
or Scrub3Forms will be evaluated. The ScrubForms are evaluated whenever the -
planner exits, either normally or via [Abort]. The Scrub2Forms are evaluated
just after the replanning input generator finishes making its new input, and
whenever the whole Runaround exits, either normally or via [Abort]. The
Scrub3Forms are evaluated just after the replanning input generator finishes
making its new input. [The variables 'ScrubForms, 'Scrub2Forms, and
'Scrub3Forms are PROG variables of Runaround. Each is initially nil, and
each is reset to nil whenever its forms are evaluated. Note that the same
domain functions file will be used each time the planner is called from the
same call to Runaround. Therefore, the same (SETQ ScrubForms --I,
(SETQ ScrubZForms --), and (SETQ Scrub3Forms --) commands will be used each
time.] For instance, a domain functions file may contain a command to

(ADVISE TieInAlternatives --)

This advice on TieInAlternatives, which is a subroutine of the planner, would
be cleaned up because of another domain-functions-file command to

(SETQ ScrubForms
<some list containing '(UNADVISE TieInAlternatives)>)

6-2

SECTION VI1

Once the logical pathname translations have been correctly set up, call
(make-system 'SUITCH-COSMIC) to have the system code loaded.
source code is in the user package, not any special package of its own; it may
want to make use of symbols that you are already trying to use in that
package. If you have functions with the same names as any of SWITCH's
functions and you expect to use SWITCH, you will have to allow SWITCH's
definitions to overwrite yours. SWITCH tries to overwrite some of its own
definitions as it is loaded, and it will ask you if that is OK. When the file
"MACROS-AND-DECLS" tries to redefine RetumNumberp, previously defined in
"LISTS", you may answer Y, N, or P; it doesn't matter. When the file
"STRUCTURE-STORAGE'' tries to redefine the function hcopyall, which was pre-

Note that the

I viously defined in the file "HCOPYALL", you should answer Y or P. If you
I answer P about the function hcopyall, "STRUCTURE-STORAGE" will quietly
I redefine the function hcopyall*, too; but if you answer Y about hcopyall,

you will be asked if it is OK to redefine hcopyall*, and you should answer Y
or P.

When (MAKE-SYSTEM 'SWITCH-COSMIC) returns, all of the necessary files
I

will have been loaded.

INSTALLING AND SETTING UP THE SYSTEM

The system is designed to run on a Symbolics 3600, 3640, or 3670 under
software release 6.0.
The tape was prepared with the Symbolics Lisp function tape:carry-dump which
is documented in Volume 0 of the Symbolics documentation. If the tape is to
be read by another Symbolics tape drive, it should be read with the function
tape:carry-load. There may or may not be ways for other kinds of tape
drives to read it. If you use tape:carry-load to read the tape, you will
have the opportunity to specify a new name for each file as it comes off the
tape. You are advised not to change the files' names any further than is
necessary to make the files fit into your file system.

The system is defined in various files on the tape.

The system uses logical pathnames to name both its source code files and
its knowledge base files. The logical host is named "SWITCH-HOST", and the
source files are on the directory "SWITCH-HOST:SWITCH;", and its subdirectory,
"SWITCH-H0ST:SWITCH;UTILITIES;". The system will expect to find its knowledge-
base files (none of which are included on the tape) on the subdirectory
"SWITCH-H0ST:SWITCH;KNOWLEDGE-BASES;", and if it is called upon to replan, it
will write new knowledge-base files to that subdirectory. The translation of
SWITCH's logical pathnames to physical pathnames is specified in the file with
the logical pathname, which should be translatable by any Symbolics connected
to a file server, "SYS:SITE;SWITCH-HOST.TRANSUTIONS". The version of this
file that is on the tape is meant to cause logical pathnames to be translated
into physical pathnames where "SWITCH-HOST" is a Lisp Machine File System
(LMFS) host named "SUN". Unless your file server happens to be an LMFS host
named "SUN", you will have to modify the "SYS:SITE;SWITCH-HOST.TRANSLATIONS"
file before you can make or run the system.
pages 189ff of Volume 5 of the Symbolics documentation.)

(See page 218 of Volume 4 and

7-1

SECTION VI11

RUNNING THE SYSTEM

Once the system has been loaded into a Lisp Listener, have the function
Runaround evaluated. It takes up to six arguments, all optional.
way, the value it returns is always nil, at least whenever it exits normally.)

(By the

A. IN RUNAROUND BEFORE THE PLANNER

If you do not supply all of the first four arguments to Runaround, the
program will query you to set the missing ones. The first argument is named
'suppress-all-output? and if it is non-nil, the planner will not display
any announcements of what it is doing between the time it finishes
initializing itself and the time it finds a solution or gives up. If you do
not supply this argument, the planner will ask (via y-or-n-p, requiring only
a single character for the answer), "Do you want to see the usual printed
announcements?" It will set 'suppress-all-output? to the negation of your
answer.

The second argument is 'suppress-ready-to-proceed?? and deals with one
way that the planner's flow of displayed announcements is frequently
interrupted so that the user can digest them. If this argument is nil, the
planner will ask "Ready to proceed?" before each announcement of the expansion
of a node, and wait for you to type in an answer before displaying anything
else. (It resumes display on receiving any answer, positive or negative, that
p-or-n-p understands.) If suppress-ready-to-proceed?? is non-nil, there
will be neither such a question nor the pause for an answer.
suppress-all-output?, the first argument, is non-nil, then the planner
sets 'suppress-ready-to-proceed?? to t, whether or not that second
argument was supplied.
it doesn't need to interrupt its work to give the user time to read any
announcements.) If suppress-all-output? is nil and you did not supply
suppress-ready-to-proceed?? , then the planner asks (again via y-or-n-p) ,
"Shall I pause and ask /"Ready to proceed?/" before printing expansion
announcements?", and sets suppress-ready-to-proceed?? to the negation of
your answer.

If

(If the planner is not displaying any announcements,

The third argument is suppress-MajorGoalCheck-on-user-input? and con-
cerns an interactive "user-friendly" feature whereby you could make the planner
pause and allow you to change the goals you gave it. If this argument is
nil, then while the planner is running, if you manage to type a character
that is not interpreted as input to the "Ready to proceed?" questions or the
Lisp machine's **MORE** processing, the planner will pause and allow you to
edit the goals list. If suppress-MajorGoalCheck-on-user-input? is not
supplied, the planner will query you (again by y-or-n-p), "DO you want the
option of typing random characters to stop me so you can edit the goals
list?", and set 'suppress4ajorGoalCheck-on-user-input? to the negation of
your answer.

The fourth argument is 'suppress-MajorGoa~Check-on-unwind? and
concerns another aspect of the goal-list-editing feature mentioned above. If

8-1

the argument is nil and the planner, after planning for a while, finds that
it has to backtrack and undo the planning of a goal from the goals list, it
will pause and allow you to edit the goals list.
suppress-MajorGoalCck-on- wind? the planner will query (again through
y-or-n-p), "Shall I stop and let you edit the goals list if I have to unwind
a major goal?", and set 'suppress-ElajorGoalCheck-on-unwind? to the negation
of your answer.

If you do not supply

The fifth argument is 'suppress-editing-and-alphabetizing-of-input-files?
and defaults to t if you don't supply it.
argument, the planner will pause in its normal display of parts of the input it
reads in, and offer to allow you to edit the last part that it displayed.
you accept the offer, then, regardless of whether or not you actually make any
changes, it will rewrite the input file containing that latest part, so that the
new version of the input file includes the latest value of that part.
might create a new version of a file outside of ZMACS; this may confuse ZMACS if
it tries to find that file again.) Also, at one time it was thought that the
system would be more user-friendly if it arranged the productions in the
productions file in alphabetical order by name, so that the user would find it
easy to look up a production by name in a large productions file. Now, the
prevailing opinion is that the productions are in the order in which they are
because the knowledge base designer wants them that way, and the system '

shouldn't alter the ordering. If you are of the earlier opinion, or you want to
be able to edit the input just after it is read in, give Runaround nil for its
fifth argument when you call it (this means you also have to supply the first
four arguments), and it will alphabetize your productions file f o r you.

If you supply nil for this

If

(This

The sixth argument is 'DRFlag and defaults to nil. If you supply a
non-nil argument here, it will fool the planner into thinking that it is
replanning with discrepancies right away, which would be useful if, and only if,
your input files were acceptable as discrepancy-replanning input files.
that discrepancy replanning is an unsupported feature, still under development.
Change DRFlag from nil only at your own risk.

Note

After asking any necessary questions to initialize its first four
arguments, Runaround checks to make sure that there is a subdirectory of
files corresponding to the logical pathname fragment
"SWITCH-H0ST:SWITCH;KNOWLEDGE-BASES;". If there is none, it asks you to
create one and to place your knowledge base files on it; it enters a break
to give you a chance to do this. If you [Resume] from the break, it assumes
that you have placed your knowledge base files on such a subdirectory, and
continues as it would have if it had found that subdirectory in the first
place. Once it is satisfied that the subdirectory exists, it asks three
questions for the names of the input files. The first two questions are of
the form, "What is the name of the file?" for the problem file and the
productions file. Runaround will accept answers of the form:

8-2

<filename>.<extension>.<version>
or

The answer must be terminated with a carriage return ([End] or [Line] might
possibly work, too; but without some kind of terminating character, the planner
would not know when you were done typing in the file name).
above, the files are assumed to be in a subdirectory represented by the logical
pathname fragment "SWITCH-H0ST:SWITCH;KNOWLEDGE-BASES;". To make Runaround
use a knowledge base file from another subdirectory, type the complete logical
pathname of the file in response to the question.) If the planner finds a file
with the given name, it next looks for a modified edit-buffer with the
corresponding name. If it finds both, it asks you which one you want it to
use; answer with the single character (and no carriage return) F for File or
B for Buffer. If it finds the file and no buffer, it quietly assumes it is
to use the file. If it finds no file, it looks for a modified buffer with the
corresponding name, and uses it if it finds it. If it finds neither a file nor
a buffer (for instance, because the user misspelled the file name), it
announces that fact and enters a break. I f you intended to have the input read
from a file, you may recover from such a break by setting either
'ProblemFileName or 'ProductionsFileName, whichever is appropriate, to a
pathname-object containing the right name string (e.g., the result of probef
on the name string), and typing the [Resume] key. If you intended to have your
input read from an edit buffer, you might be able to recover from the break by

(As mentioned

I setting 'ProblemFileName or 'ProductionsFileName to the result returned by

to the complete name of the buffer, or with an argument that is a pathname
object containing the name string for the file corresponding to the buffer.

I

I the function zwei:find-buffer-named with an argument that is a string equal

<filename>.<extension> defaulting to the latest version, or

i The next question will be, "In what file are the scheduled events?".

I The same forms of answer as above are accepted, as well as the answer NIL,

skip trying to read a scheduled-events file, and you would type NIL if all of
which must be terminated with a carriage return. NIL signals the planner to

the scheduled events and productions were in the productions file. Again, the
planner looks for a file and an edit buffer, uses the one it finds if it finds
only one, asks whether you want F or B if it finds both, and breaks if it
finds neither. To recover from this break, set 'ScheduledEventsFileName to
a pathname-object containing the right name string (or set it to nil if
that's what you meant, or to the result of zwei:find-buffer-named on a
pathname-object containing the right name string) and [Resume].

I
I

t
I

The next question will be "What shall I use for Equalsign?".
!

i
'Equalsign is a PROG variable and its value is the name of the assignment
intensive; see Assignment under KNOWLEDGE BASE LANGUAGE, Section 111. In
the original version of DEVISER the assignment intensive name was 'VALUE.OF.

I
t

<filename>.

<filename>.

with the null extension and latest
version, or

defaulting to the null extension
and latest version.

8-3

Later it was 'ValueOf, and still later, '=. To allow the planner to work
with input files of different vintages, the variable 'Equalsign was
introduced. The knowledge base designer can use any symbol he/she likes for
Equalsign, provided that it does not (1) conflict with other relation names
or domain function names, (2) begin with a question mark, or (3) contain any
characters in which case matters, as the user's answer to the Equalsign
question is automatically uppercased as soon as it is read.
widely-used Lisp functions are also discouraged; they haven't been
sufficiently discouraged so as to stop us from using '= yet.)
be aware of what symbol the knowledge base designer used for EqualSign, and
type it in response to this question.
quote, but you must terminate it with a carriage return.)

(Names of

The user must

(You should not begin the answer with a

B. IN THE PLANNER

1. Verbose Output?

If not all output is being suppressed, i.e., if suppress-all-output?
is nil, the next question is, "Verbose output?" Answer with a single
character, and no carriage return: Y to see verbose output, N to see
slightly less verbose output. If suppress-all-output? is non-nil, this
question is omitted and you will see no output, verbose or otherwise, from the
planner after it initializes itself.
of output while running, suspend the planner, set 'VerboseFlg to t for
verbose output or nil for slightly less verbose output, and [Resume] the
planner.
suppress-all-output? is non-nil, then some of the planner's announcements
that are normally displayed only in verbose mode will be displayed, while the
other announcements will still be suppressed.)

(If you wish to change the verboseness

If you forcefully reset 'VerboseFlg to a non-nil value when

2. DesperationIndex

After "Verbose output?" is omitted, or asked and answered, the
planner will query you for a "DesperationIndex:" and list the single-
character digits 0 through 4 that are acceptable answers. Your answer
will become the default desperation index for goals that are declared without
desperation indices. See Desperation, Priorities, and Urgency under
PRODUCTIONS AND SCHEDULED EVENTS, Section IV-G, and "HE PROBLEM FILE,
Section V, f o r information about the use of desperation indices.
to change the default desperation index while running, suspend the planner,
set 'DefaultDesperationIndex to whatever value you want from the allowed
values, and [Resume].)

(If you wish

3 . How Shall I Handle SkipIt Alternatives?

Next the planner will ask you, "How shall I handle SkipIt alter-
natives?", and list the possible answers, s , N, A, 0, 1, 2, 3, or 4. Your
answer will determine SWITCH'S behavior with respect to generating and using a
SkipIt alternative when a major goal (a goal declared in the Goals declaration
in the problem file) comes up for expansion. See Productions that Are N o t in

8-4

the Knowledge Base under PRODUCTIONS AND SCHE3ULED EVENTS, Section IV-C, and
Asking About SkipIt Alternatives ahead in this subsection (B-5, page 8-5), for
more details about SkipIt alternatives.
4 to answer this question, SWITCH will generate a SkipIt alternative as a last
resort for each major goal with desperation index less than or equal to your
chosen digit, if and when the goal comes up for expansion. If you answer the
question S, SWITCH will generate a SkipIt alternative as a last resort for
every major goal that comes up for expansion.
always less than or equal to 4, S and 4 are equivalent answers to this
question.) If you answer N, SWITCH will not generate any SkipIt alternatives.
If you answer A, then every time it computes the expansion alternatives for a
major goal, SWITCH will ask you whether or not you want it to try a SkipIt
alternative and, if you say Yes, it will allow you to place that SkipIt
alternative in order among the "real" alternatives.
SkipIt-alternative handling in the middle of a run, suspend the planner; set
'SkipFlag to 0 , 1, 2, 3, or 4, each of which means the same as it would as
an answer to the initializing question, or set it to 4 (respectively,
nil, 'a) which corresponds to having answered S (respectively, N, A) to
the initializing question; and [Resume] the planner.)

If you choose a digit from 0 through

(Because the desperation index is

(If you want to change the

4. Periodic Pauses in Display

-MoREH
Ready to proceed?

While the planner is running you might need to interact with it in
various ways. For instance, its displayed announcements might fill up the
screen, and the terminal-I0 window might have "more processing enabled", in
which case the Lisp machine will display "**MORE**" at the bottom of the screen
and wait for you to type any ordinary character before it displays any more
announcements. In this situation you can abort out of Runaround by hitting
the [Abort] key, suspend the planner by hitting [Suspend], enter the debugger
with control-meta-[Suspend], etc.
must type the [Resume] key and a character for **MORE**. For another
instance, the planner may expand a node, ask you "Ready to proceed?", and wait
for you to enter some answer that y-or-n-p understands before it displays
the announcement of the expansion. Here, too, you could abort or suspend
operations; if you suspend and wish to resume, you must answer the "Ready to
proceed?" after typing the [Resume] key. The arguments to Runaround and the
values of 'VerboseFlg and 'SkipFlag may prevent anything from being
displayed, in which case you would not have to type anything to cause the
display to continue, and you would find it less easy to suspend the planner.

If you do suspend and want to resume, you

5. Asking About SkipIt Alternatives

Want to try a SkipIt alternative too?
When (with respect to other alternatives) ?
The SkipIt alternative goes before which real alternative?

If SkipFlag is 'a, you might be asked "Want to try a SkipIt alternative
too?" and given the answers Y, N, and I from which to choose; you may also
type the [Help] key to receive a short explanation of the answers. The answer

8-5

I causes SWITCH to display Information about all of the major goals.
major goal, the appropriate one of the strings, "Currently being considered",
"Not yet considered", "Skipped", or "Achievement scheduled", is displayed,
followed by the goal predicate and its desperation index. (In case you have
suppress-all-output? on and are being asked about skipping a goal, you can use
the I answer to find out which goal it is that the planner might be about to
skip. With the announcements suppressed, you wouldn't have many other ways of
knowing that.) After this Information is displayed, the "Want to try a SkipIt
alternative too?" question is repeated, with the same three optional answers
having the same results.
N, SWITCH will proceed without the alternative of skipping the current goal.
If you answer Y, it creates a SkipIt alternative, asks, When (with respect to
other alternatives) ?'I, and displays the possible answers, F, L, B, N, and
I . Again, you may obtain a brief explanation of the meaning of the answers by
typing the [Help] key. If you answer F, SWITCH will use the SkipIt
alternative as the First alternative for "achieving" the goal and, thus, will
not schedule any actions that achieve the goal on purpose, unless it later
unwinds to this point. If you answer L, SWITCH will use the SkipIt
alternative as a Last resort and, therefore, might not use it at all unless it
later unwinds to this point. If you answer B, SWITCH will ask another
question, which will be described in the next paragraph. If you answer N,
SWITCH forgets that you said you wanted it to try a SkipIt alternative, and does
not insert the one it created among the "real" alternatives. If you answer I,
SWITCH displays the Information described above about each major goal, and
returns to the "Want to try a SkipIt alternative too?" question.

For each

Y and N mean Yes and No as usual. If you answer

If you answer the "Want to try a SkipIt alternative too?" question with
B, SWITCH will echo "Before which?" and display "The SkipIt alternative goes
before which real alternative? (Type number and carriage return to put SkipIt
before numbered alternative; or type L and carriage return to put SkipIt
Last.)" Then it will display the production-name and substitution of each
"real" expansion alternative, preceded by an identifying number. It will then
wait for you to type a number or L terminated by a carriage return. As the
displayed message indicates, if you answer with a number that is the identifying
number of an alternative, SWITCH will place the SkipIt alternative before that
numbered alternative (and if the number isn't 1, SWITCH might not use the
SkipIt alternative at all); while if you answer with L, the SkipIt alternative
will become the Last resort. As the typed message does not indicate, any answer
that is a symbol is treated as L here, and any answer that is neither a symbol
nor the number of a numbered alternative causes SWITCH to return to the "Want to
try a SkipIt alternative too?" question.

6 . Major Goal Check

User interrupt detected: / Continue?
The goal <goal predicate> is about to be unwound / Continue?
Reviewing GoalsList. . .
Retain this goal?
Edit goal predicate?
desperation index
Continue planning?

8-6

Depending on the arguments suppress4ajorGoalCheck-on-user-input? and
suppress-MajorGoalCheck+n-unwind?, the planner may, on occasion, give you
the opportunity to edit the goals list. One situation in which this will
happen is when suppress-MajorGoalCheck-on-user-input? is nil, the planner
is running, and you type a character that neither the Lisp machine's **MORE**
processing nor SWITCH'S "Ready to proceed?" question takes as input. In this
case the planner will display "User interrupt detected:" and ask (via
y-or-n-p), "Continue?"
executing commands to undo tentative changes that it made to the partial plan,
and is about to undo the tying-in or expansion of a node.
once a blank node containing one of the major goals from the problem file, and
suppress-MajorGoalCheck-on-unwind? was ni l at the time the tie-in o r
expansion was made, and the backtracking began while SWITCH was planning a
later major goal, after it completed planning to achieve this one, then SWITCH
would interrupt itself, display, "The goal <goal predicate> is about to be
unwound", and ask, "Continue? " , via y-or-n-p.

Another situation is when the planner is running and

If the node was

In either of the above situations, if you answer Y to "Continue? I(, the
planner just resumes planning (or backtracking).
planner displays "Reviewing GoalsList. . .'I and begins to lead you through the
goals. For each goal (until you answer P or Q; see the second following
paragraph), SWITCH displays "Goal Predicate:" and the goal on one line. It
displays "desperation index:" and the goal's desperation index on another
line. Then it displays, "Retain this goal?", followed by the current answer
to that question (initially Y) between square brackets and a colon on
another line. You are expected to reply to "Retain this goal?" with one of
the letters Y, N, Q, A, P, o r D. SWITCH will display a help message if
you type the [Help] key. If you type Y or N (for Yes or No), the "Retain
this goal?" answer for this goal becomes what you typed (the change is not
permanent yet), and you move on to review the next goal. (See the second
following paragraph for what happens when you have reviewed all the goals.)
If you type D for Default, the "Retain this goal?" answer for this goal
remains what it was, and you move on to review the next goal.

If you answer N, the

If you type A f o r Alter, you will be allowed to modify the goal and/or
its desperation index. First, SWITCH will display "Edit goal predicate?"; you
must answer this with a complete word, Yes o r No, terminated by a carriage
return. If you answer Yes, the symbol 'foo will be set to the current goal
predicate, and you will be allowed to edit it with editv.
documentation on editv under UTILITIES, Section XI.) (The change is not
permanent yet.)
SWITCH next displays "Desperation index", the goal's desperation index between
square brackets, and a colon; and you must type the new desperation index for
the goal. If you want the desperation index to stay the same, you must type
in the same number. Then the planner reviews the next goal.

(See the

If you answer No, or answer Yes and return from editv,

If you type P for Punt, SWITCH restores the goals and desperation
indices to their state as of the last time it typed "Reviewing
GoalsList. . .I1, resets all "Retain this goal?" answers to Y, and asks,
"Continue planning?", to which you must answer Y o r N with no carriage
return. Also, if you review all of the goals, o r type Q as the answer to
"Retain this goal?" for one of them, SWITCH will ask, "Continue planning?",
but without restoring the goals to their previous states. If you answer N
to "Continue planning?", you will be allowed to review the goals again, as

a-7

above, and you may again arrive at the point where SWITCH asks, "Continue
planning?". As long as you answer N to @'Continue planning?", you can
continue to review the goals. If you have altered any goal predicates or
desperation indices without Punting, the new forms will appear on these later
reviews, but the original forms can still be restored by Punting.

If you eventually answer Y to "Continue planning?", any changes that
you made to goal predicates or desperation indices, and did not retract by
Punting, will become permanent, and any goal for which the "Retain this goal?"
answer is N will be dropped.
backtrack to the latest point at which it had not begun planning for any of the
changed or dropped goals, and take up planning again at that point. During
this massive backtracking, if SWITCH unwinds another major goal, it will not
stop and allow you to review the goals list again. However, it will stop and
allow you to review the goals list if you type a random character. After it
resumes planning, either random input or unwinding a major goal will make
SWITCH stop and allow you to review the goals list; this time the goal predi-
cates and desperation indices will be as you left them after the last review.

If any such changes were made, SWITCH will

Note that you are not permitted to add goals during these reviews, only
to modify or drop existing goals.
goals include only altering their predicates and desperation indices, not
their organization into packages, nor their windows, nor durations. Note also
that if you modify the goals, and SWITCH unwinds to a point before it had
started planning for any of the modified or discarded goals, proceeds forward
from there and, later, has to backtrack past that point again and execute
still earlier undoing commands, then the internal representation of the plan
reset by these undoing commands will probably not be compatible with your
changes to the goals. In fact, the plan may be incompatible with itself.

Furthermore, the allowed modifications of

7. Save the Plan on Disk for Fragments?

If the planner finds a solution, it asks (with y-or-n-p), "Save
the plan on disk for Fragments?" This question is a remnant of an earlier
version of the planner, and you should answer N or [Suspend], but when you
[Resume], you'll have to consider the question again. If you answer Y in
spite of this advice, SWITCH will try to call an undefined function named
WriteIntoNewplans, and go to the debugger. You may recover from this error
by repeatedly typing control-n untilthe WriteIntoNewplans frame becomes
the current frame, if you are not already at that level, and typing
control-r to make the debugger "return a value". The caller is not
interested in any values, so the error handler will ask if it should return
from WriteIntoNewplans, and you should answer Y.

8. Plot the Flowchart?

When you have passed "Save the plan on disk for Fragments?", the
planner will beep and display the solution. See the DRIBBLE file in the
APPENDIX for the form of the displayed solution. Next, the planner will
ask, "Plot the flowchart?" This is another remnant -from an old version of the
planner and, again, you should answer N. If you answer Y instead, SWITCH
will try to call the undefined function Plot and go to the debugger. You

8-8

may recover by repeatedly typing control-n until the Plot frame becomes
the current frame, if you are not already at that level. Then type
control-r to make the debugger "return a value". The caller is not
interested in any values, so the error handler will ask if it should return
from Plot, and you should answer by typing Y.

9 . Print the Flowchart?

If you answer N to the plot question, SWITCH will ask, "Print
the flowchart?" This time neither Y nor N will lead to a call to an
undefined function.
the plan, and on N, it doesn't. (If you answer Y to the plot question,
and recover in the way described, the print question is skipped.)

On Y the planner displays a different representation of

10. Save this Plan for Replanning, and Save Predictions
for the Execution Monitor?

Next the planner asks you, "Save this plan for replanning, and
save predictions for the Execution Monitor?" Answer Y if, and only if, you
expect to call for replanning, and you think that the plan just generated
might be the plan that will be executed.
more plans to achieve the same goals; if you're going to allow it to try for
more and you're very confident that it will do better than the current plan,
go ahead and answer N. Another reason to type N is that you are not
interested in replanning after you receive a plan from the current planning
run.)
internal state to be equivalent to its current internal state, and stores the
program for later reference. If you do save a plan, the planner displays such
an announcement as, "That's the eleventh plan you've saved on this cycle."

(Remember that SWITCH might generate

If you answer Y, SWITCH generates a Lisp program that would reset its

11. Try for Another Solution?

Next, the planner asks, "Try for another solution?" If you answer
Y, SWITCH begins unwinding the current plan. When it reaches a point at
which there are interesting alternatives, it tries the first one, and may
eventually find another solution, in which case it will ask, "Save the plan on
disk for Fragments?", again.

The planner exits normally (passing control to the next step of
Runaround) in two ways.
solution?", or it may exhaust its search space, unwinding back to the
beginning and having no further alternatives (or never finding an alternative
for initial start-up).

You may eventually answer N to "Try for another

C. IN RUNAROUND BETWEEN CALLS TO THE PLANNER

This section contains descriptions of several questions asked by
Runaround for which there are some answers that would cause Runaround to
terminate. If you are following this text as a guide and you give one of
those answers, the rest of the guide will not apply. For that matter, if you

8-9

saved no plans on the first call to the planner, Runaround will realize that
no replanning is possible, and quit without any of the following interaction.
For purposes of discussion, assume that you do have a saved plan, and you
always type an answer that lets Runaround continue.

1. Choosing Among Multiple Saved Plans

You have saved # generated plans.
Unfortunately I am not currently able to
steps each plan contained.
Which will you use?
(Answer with number and carriage return;

To enable replanning, Runaround must determine which

remind you what

I'll wait)

of the saved
plans is going to be executed. If you saved exactly one of the planner's
plans, Runaround quietly assumes that this plan will be executed. If you
saved more than one, the planner displays such an announcement as, "You have
saved 3 generated plans. Unfortunately I am not currently able to remind you
what steps each plan contained." It then asks, "Which will you use? (Answer
with number and carriage return; I'll wait)". As the announcement and
question indicate, you had better have remembered the distinguishing features
of the plans, and the order in which they were generated and saved. Type the
number of the plan that you want the system to accept as the one to be
executed, and end with a carriage return. (If you type anything other than
the number of a plan, Runaround prompts you again for an acceptable number,
repeating until you finally do type in an acceptable number, or you abort.)

2. In Case No Plans Were Saved

No plans were saved on this replanning run, but I still remember
the selected plan from the previous M. Shall I Quit or Stick
with the previous plan?

[Q or S; I'll wait]

If you didn't save any of the plans that the planner made, Runaround's
next step depends on how many times it has already called the planner. If the
latest return from the planner was from the first time it was called, there
have been no plans saved at all in this whole call to Runaround, and it
can't do anything about replanning, so it displays, "NO plans were saved, so
no replanning will be possible. Quitting", quits, and returns nil to
whoever called it. However, if the latest call to the planner was to replan
after an earlier planning run, then there must have been a plan saved on that
earlier planning run. Runaround would not have forgotten that saved plan,
and offers to replan from it again. This allows you some form of recovery if,
for instance, you call for replanning; the planner finds one solution; you
don't save it, but instruct the planner to try for another solution; it fails,
and you're left with no saved plan. In that case you can call for replanning
again, and save the first solution this time. The displayed announcement and
question in this case are, "NO plans were saved on this replanning run, but I
still remember the selected plan from the previous run. Shall I Quit or Stick

8-10

with the previous plan? [Q or S; I'll wait]". Type either single character
Q or S, with no carriage return:
will return nil, or S to revive and Stick with the previously saved plan.
Or, type the [Help] key for a help message and a repeat of the question.
type [Abort], [Suspend], etc., for their usual effects.)

Q to Quit out of Runaround, which

(Or,

3. Sending Predictions

To which machine, Sun Moon or Venus, should predictions be sent?
(S, M, V, or anything else)
SIMON SAYS .

Once Runaround has determined the active plan, it does something
related to discrepancy replanning, which is still under development. Not only
is the next display pertinent to discrepancy replanning, it is specific to our
site at JPL, where we have three Lisp machines named Sun, Moon, and Venus.
Runaround displays, "To which machine, Sun Moon or Venus, should predictions
be sent?
alphabetic character other than S, M, or V. If, in spite of that warning, you
answer with S, M, or V, Runaround will try to send an undefined message,
possibly to an undefined object.
able to recover by typing control-S to make the debugger search in the
stack. When the debugger prompts you for a string, type
SendPredictionsToMailboxes. When the SendPredictionsToMailboxes frame
becomes the current frame, type control-meta-r to reinvoke it. Then the
question will be repeated and, this time, you can type a better answer. If
you give a non-SMV answer, then, depending on several things
(suppress-all-output?, whether or not anything in your knowledge base was
declared measurable, whether or not any measurable instances of things from
the knowledge base actually show up in the plan), Runaround may display,
"Printing out predictions:" and several lines of the form

(S, M, V, or anything else)", which you should answer with a single

It should enter the debugger. You might be

SIMON SAYS (SEND <something> :SEND '(<something>
<something> <something>)

If these lines appear, try to be patient.

4. Commanding Replanning

->
What time does new plan's execution start?

Once it is past "sending predictions", Runaround types the prompt "->".
There are two possible responses to this prompt (in addition to [Help],
[Abort], etc.).
or type R to call for Replanning.
"Replan", asks, "What time does new plan's execution start?", and waits for
you to type an answer terminated by a carriage return. Possible answers are:
F (or any symbol beginning with F) which causes Runaround to return to the

prompt (which will look for the same answers as it did before); ll->ll

Type Q to Quit out of Runaround, which will return nil,
When you type R, Runaround echoes,

8-11

Forgetting about replanning for the time being; Q (or any symbol beginning
with Q), causing Runaround to Quit and return nil; ? to see a help
message and return to the "What time ...*' question; a number, which
Runaround interprets as the start time of the new plan in seconds; or a
hh:mm:ss.decimal character-sequence, which Runaround interprets as the new
plan's start time in hours, minutes, seconds, and (optional) decimal part of a
second. (At this point you have the option of slashifying the hh:mm:ss.dec o r
not; the reader will not try to turn the hours into a package name if you
don't slashify.) If you give any other answer, Runaround will display "I
don't understand that.
you to the "What time.. ." question. Type ? and carriage return for short help." and return

If you give Runaround the new plan's start time, it next makes sure
that it has executed the saved-plan program to set up an internal
representation of the chosen plan. If it has already done that, it displays,
"Flowchart of most recent plan is already present; no need to restore it." and
proceeds. Otherwise it displays, "Reading in internal representation of
flowchart of selected plan . . . ' I , works for a while, and displays, "Done.".

5 . Any Discrepancies?

When Runaround is satisfied that it has an internal representation
of the plan, it checks to see whether or not the plan contains any
predictions, i.e., whether or not any measurable instances of things from the
knowledge base actually show up in the plan. If there are no predictions,
Runaround displays, "No predictions were saved, so I assume nothing in the
old plan was measurable, so I assume you don't know that anything went wrong
with the old plan, so I assume nothing went wrong with the old plan." and
proceeds to process the goals of the existing plan, as described below, as a
first pass at a goals list for the next plan. On the other hand, if there
were predictions, Runaround asks you (with y-or-n-p), "Any
discrepancies?". Because discrepancy replanning is still under development
and is not supported, you should answer N to this question. Answer Y only
at your own risk; discussion of what would happen if you answer Y is
relegated to another section. If you answer Y by mistake, you can recover
by answering the next question (which does not appear right away; first the
predictions are displayed again) with DONE and a carriage return. Assume that
either there were no predictions or you typed N to "Any discrepancies?",
meaning that there are no discrepancies, and everything in the old plan worked
as the knowledge base described it, and will continue to work until the new
plan takes effect.

6 . Edit, Forget It, Print, Quit, o r Trust Me?

If you need to replan, and you do not allow anything to go wrong
with the steps of the old plan, you must have some need to alter the goals for
which the old plan was made, by adding new goals, and/or deleting'or modifying
existing goals. Runaround examines and processes the goals that were input
to the planner for the old plan to construct a tentative goals list for the
new plan, which it will present to you for editing.

8-12

Runaround checks the old plan to see which of the former goals will

Recall that achieving a goal package involves establishment of a
already have been achieved by the time the new plan starts, and which will
not.
collection (possibly, but not always, a singleton) of assertions, and ensuring
that the assertions in the collection remain simultaneously true for some
"truth interval" of time, beginning within a specified (or defaulted) window
and lasting for a specified (or defaulted) duration (which is often, but not
always, zero). If the new plan starts before the time when the old plan had a
goal package's truth interval beginning, then that goal package is not in any
sense achieved by the partial execution of the old plan. The replanning input
generator creates a copy of the goal package and inserts it into the tentative
goals list for the replan. If the new plan starts at or after the end of the
goal package's scheduled truth interval, the partial execution of the old plan
fully achieves the goal package, so the goal package will not be inserted into
the tentative new goals list at all. For a goal package that is not covered
by the previous two sentences, a "rerun phantom goal" is created and placed in
the tentative new goals list, and one or two dummy productions are created to
achieve it. The preconditions of these productions are the assertions of the
goal package; the windows, durations, and types of the productions are set so
that on the next planning run, the resulting plans (if any) will satisfy the
original form of the goal package. Each time it creates a rerun phantom goal,
Runaround announces that fact with an announcement including the rerun
phantom goal itself and the goal package to which it corresponds. The rerun
phantom goal will appear in the tentative new goals list (as a predicate with
a nullary relation with name of the form, "RerunPhantomGoal#', where # stands
for a sequence of digits), and you can take it out of the tentative goals list
in the editor if you choose, but you will not automatically be given a chance
to modify it less drastically.

When it has collected the unsatisfied old goals, Runaround announces
that fact with the display, "I've made a new goals list taking into account
the old goals and the beginning of the previous plan."
"Edit, Forget it, Print, Quit, or Trust me?". Answer with a single character
from among E, F, P, Q, T, or [Help]. If you answer Q, Runaround will
Quit and return nil to whoever called it. If you answer F, Runaround
will Forget about replanning for the time being and return to the "->"
prompt. If you answer P, Runaround will Grind the RerunGoalsList to the
terminal-I0 window and repeat the "Edit, Forget it, Print, Quit, or Trust me?"
question.
question will repeat. If you type E, you will be allowed to Edit the
RerunGoalsList in ZMACS (see the documentation on the function editv under
UTILITIES, Section XI). If you type T, Runaround proceeds to replan
with the unedited RerunGoalsList as its goal list. In this case, it is
likely that nothing more will result than a copy of the conclusion of the
existing plan; the intended use of the Trust me option is for occasions when
there are discrepancies, but no goal changes.

Then it asks you,

If you type [Help], you will receive a help message and the

If you type E, then before displaying the editor screen, Runaround
displays a wordy announcement, probably too wordy for you to read before the
edit screen comes up.
is reproduced here.

As it does contain potentially valuable information, it

8-13

For each goal which the previous plan skipped, if the Earliest
Start Time of its package hasn't passed or not all conditions in
its package have been achieved or skipped by NewTimeO, the goal
appears explicitly, embedded in "(*Skipped *)I* advice, in the
RerunGoalsList; so you can tell which of the explicit rerun goals
were skipped, and delete them if you choose. When you leave the
editor, I will remove *Skipped advice from any such goals that are
still there, and they will become as ordinary goals. For a goal,
skipped by the previous plan, such that the goal's package's EST
HAS passed and all of the package's conditions HAVE been achieved
or skipped by NewTimeO but not lasted for the package's desired
duration, the goal (with *Skipped advice) appears in the
corresponding RerunPhantomGoal.
its *Skipped advice will survive the upcoming replanning run but it
will still be skipped; if you strip the *Skipped advice from around
it then DEVISER will try to achieve it; and of course if you remove
it then it will be gone.

If you leave it there then it and

In the form of the tentative goals list that appears in the editor, all
numbers, even those that represent times, are displayed as numbers. You may
enter hh:mm:ss.decimal times in the goals list in the editor, but you must
slashif y them.

While you are using the editor, if any announcement(s) appear on windows
superimposed over the editor (e.g., the file has neither a base nor a syntax
attribute), be sure to [Refresh] the screen before you leave the editor. When
you leave the editor, type Y when you are requested to do so.

When you return from the editor (or, if you choose the Trust me option,
right after you give that answer), Runaround calls the subroutine
ReadIrrevocablesForRerun. This subroutine scans all activities of the old plan
and performs different operations on them, depending on their scheduled start
times, finish times, and irrevocability. For an activity that will have finished
by replan start time, ReadIrrevocablesForRerun places the activity's effects
into a list that will eventually become the initial state for the next plan (first
checking each effect against any equivalent or contradictory effect that may
already be in the list, and discarding the one that was established earlier).
For an activity that will have started but not finished by the new plan's start
time, ReadIrrevocablesForRerun creates a Scheduled Event for the new plan,
which will describe the completion of that activity. For an activity that will
not have started by the new plan's start time, ReadIrrevocablesForRerun applies
the Irrevocable? declaration (if any) of that activity's production from the
knowledge base and, if the activity turns out to be irrevocable, creates a
Scheduled Event for the new plan, which will ensure that an equivalent activity
appears in the new plan. (See the description of the Irrevocable? declaration as
an option in the production s-expression at the beginning of the section
PRODUCTIONS AND SCHEDULED EVENTS, Section IV, page 4 - 3 . See also the separate
description of discrepancy replanning for a discussion of the interaction of
discrepancies, ReadIrrevocablesForRerun, and the user.)

Near the end of ReadIrrevocablesForRerun, the function applies the
Wipeout declarations from the knowledge base to the new initial state it has
collected. This may remove some assertions from the new initial state. See
The Rest of the Productions File under PRODUCTIONS AND SCEEDULED EVENTS,

8-14

Section IV, page 4-24. After that, ReadIrrevocablesForRerun removes from the
new initial state assertions that were established by inferences and are not
needed for the completion of the in-progress activities. This criterion for
deciding which inference assertions to keep can err in either direction. It is
true that the new plan will not schedule any contradictions to an Inference
assertion or precondition before the completion of all in-progress and
irrevocable activities depending on it; but this does not stop the planner from
scheduling contradictions to the preconditions later in the replan. If it did
schedule such, it probably would not notice that it entailed a contradiction
with the Inference assertion; because in the replan, that assertion appears as
an initial-state assertion instead of as an Inference assertion. In that case,
the planner might schedule an action that depended on the Inference assertion
at a time when the Inference assertion no longer holds. On the other hand, the
replan might not produce any contradictions to the preconditions of an
Inference, in which some of the assertions were dropped from the new initial
state simply because they were not needed for anything. In this case, the
error is less serious than in the above case; here, the planner can probably
just schedule the same Inference again if its consequent assertions are needed
in the new plan, as its preconditions remain true.

When the old plan has been processed, the replanning input generator
actually begins to write the new input files. (Note that whether all of your
initial planning input was read from files or whether some of it was read from
edit buffers, the replanning input is placed into files and will be read from
those files by the planner.) The new input files are all placed on the
subdirectory represented by the partial logical pathname,
"SWITCH-H0ST:SWITCH;ICNOWLEDGE-BASES;". The name of the new productions
(respectively, problem) file is obtained from the name of the previous one by
concatenating "RERUN2" on the front of the file name if the previous name did
not begin with "RERUN"; by incrementing the number between the initial string
"RERUN" and the next non-digit character or end of the filename, if the
previous name began with "RERUN#' (where
digits); and by inserting the character "2" after the initial string "RERUN" if
the previous name began with "RERUN" followed by a character other than a
digit. For example, if you began planning with a productions file named
PPSPRODS., then on the second planning run (the first replanning run) the new
productions file would be named RERUN2PPSPRODS.; on the third planning run the
productions file would be named RERUN3PPSPRODS. If you allow it to keep
replanning many times you might eventually see RERUN43PPSPRODS., etc. The
index of the planning run, for which a RERUN productions or problem file was
created, can be easily read from the file name, unless the user or knowledge
base designer defeats the indexing scheme by providing an initial problem or
productions file of which the name begins with the substring "RERUN" followed
by one or more digits.

stands for a nonempty sequence of

It may well be the case that there will be a scheduled-events file on the
upcoming planning run even if there was no such file on the last one. In this
case the name of the new scheduled-events file will be the result of concaten-
ating "RERUNPSEFOR" (i.e., Rerun2 Scheduled Events for) on the front of
the previous productions file name.
the previous planning run, the name of the new one is constructed from the name
of the previous one by the same process that named the new productions and
problem files. Because the presence of a scheduled-events file may vary from

If there was a scheduled-events file on

8-15

time to time within a single call to Xunaround, it might happen that at some
point the scheduled-events file is named, e.g., RERUN2SEFORRERUN18BLOCKPRODS.
In this case, the 2 after the initial substring "RERUN" of the name does not
indicate that this file was created for the second planning run. Instead, it
was probably created after a planning run in which there was no
scheduled-events file and the productions file was named RERUNl8BLOCKPRODS.;
that would be the eighteenth planning run, so the scheduled-events file in
question was created for the nineteenth. If a scheduled-events file is needed
for the next planning run, it will receive the name
RERUN3SEFORRERUN18BLOCKPRODS., while the productions file for that run will be
RERUN20BLOCKPRODS.

7. Now Here's a LISP BREAK . . .
Runaround creates the productions file name, then opens the new

productions file and begins to write to it. For debugging purposes a BREAK has
been installed near the beginning of productions-file writing. Runaround
reports the break with an announcement that includes the substring, "Now here's
a LISP BREAK", and a probable safe course of action would be to [Resume] from
it (unless you wish to abort or perform some debugging). If you [Resume],
Runaround will finish writing the new productions file and close it; open,
write, and close the new problem file; and open, write, and close the new
scheduled-events file (if any). Note that the planner will use the same domain
functions file as before.

Once it has constructed the input files, Runaround resets some of its
internal variables and calls the planner again. For guidance, see the previous
subsection, In the Planner. Note that you will not automatically be given a
chance to reset suppress-all-output?, suppress-ready-to-proceed??,
suppress-MajorGoalCheck-on-user-input?, and suppress-MajorGoalCheck-on-unwind?.
Also, the planner already knows that the input files are the ones that were
just created, so it does not ask you for their names; and it assumes that
Equalsign is still the same as it was in the previous planning run. The
planner's interaction with you resumes with "Verbose output?" or
"DesperationIndex:" depending on suppress-all-output?.

D. GETTING OUT OF RUNAROUND

Several normal ways of exiting Runaround are described above in the
previous subsection. One method is to fail to save any plans the first time
the planner runs.
are given by the program, and exiting requires answering the question with
"Q"
prompts and quitting responses are summarized here.

The other means are applicable only when certain prompts

(sometimes requiring a carriage return to terminate the answer). The

Type Q and no carriage return to the question, "No plans were saved on
this replanning run, but I still remember the selected plan from the previous
run. Shall I Quit or Stick with the previous plan? [Q or S; 1'11 wait]"
(which may be repeated as just "[Q or S; I'll wait]" if you type [Help] or
[Suspend] or some similar type of response the first time it occurs).

8-16

Type Q and no carriage return to the prompt, "->".

Type Q (or any symbol beginning with Q) and a carriage return to the
question, "What time does new plan's execution start?".

I
Type Q and no carriage return to "Edit, Forget it, Print, Quit, or

Trust me?".

Also, you may exit Runaround abnormally by typing the [Abort]
character at any time when Runaround, the **MORE** processing, or a
breakpoint or debugger command loop is awaiting input, or by typing [Abort]
with enough control and meta keys held down at most other times.

See the discussion of Scrub under EFFECTS OF RUNAROUND AND SWITCH ON
TEE LISP ENVIR0"T in the next section (Section 1x1.

I
I

8-1 7

SECTION IX

EFFECTS OF RUNAROUND AND SWITCH ON THE LISP ENVIRONMENT

Runaround and SWITCH have many PROG variables, and they store much
intermediate information as values and property values of symbols that they
generate, and as values and property values of symbols that they read in from
the knowledge base. A discrimination net of predicates is implemented via
pointers among symbols generated by gensym.
are created by appending hyphens and digits onto the names of the variables in
the knowledge base, and these variables are assigned values and properties.
Nodes have identifying symbols such as 'nl, 'n2, 'n3, etc., and these ID's
have properties. Relation names, production names, and consumable-resource
names have properties. Some of
the non-PROG values point to large data structures which are not useful
outside of Runaround. If these pointers were allowed to remain, the large
structures would never be garbage-collected; not only that, but they would
confuse any later calls to Runaround. Runaround contains some functions to
"scrub" these pointers; the functions are Scrub, Scrub2, and Scrub3.

Symbols which are new variables

Those examples are by no means exhaustive.

The scrub functions are overzealous in some respects. For some symbols,
they remove individual properties, but for others they setplist to nil.
If you use relation names, variables, production names, etc. that have
properties that are useful to you outside Runaround, those properties may
well be destroyed by Runaround. By the same token, if you have created any
symbols that Runaround or SWITCH uses, or set any properties with names that
Runaround or SWITCH uses, their presence may confuse Runaround or SWITCH.

The function Scrub is called whenever SWITCH exits, either normally to
a point within Runaround, or by aborting to a higher level.
properties named 'Preference, 'TimeVars, 'Deleters, 'Arity, 'NextNodes, '<,
and '> from all relation names and from the symbols 'not,
'ForwardChainingNet, and 'LiteralNet. Then it removes the value and nulls out
the plist of every consumable resource name, and nulls out the plist of
every type, i.e., the type of every typed variable. It removes the seven
properties named above from every production name.
nonconsumable resources, Scrub removes the name of the group as a property
name of the symbols 'NCRSequence and 'NCRNodesToChange, and makes the name
unbound. It removes the 'ReallyOnPredicate property from each appliance name
(as declared in the NCRUsers declaration in the productions file).
makes many symbols that SWITCH created that end in numbers unbound and nulls
out the property lists of those symbols: (1) all node ID's, (2) all *Pg#
phantom goal relations, (3) all variables that end in hyphen-number
substrings, (4) all nodes in the above-mentioned discrimination net of
predicates, and (5) all PreservePackageGoals## and ReachievePackageGoals#
relation names created by the replanning input generator.
base variable that ever had a hyphen and number concatenated onto it, Scrub
also makes the original form of the variable unbound and nulls out its
plist. Then there are still other lists of variables from which Scrub
removes values and properties, if they have any left. If there are any
ScrubForms (see THE DOMAIN FUNCTIONS FILE, Section VI, page 6-l), Scrub

Scrub removes

For each group of types of

Then it

For any knowledge

9-1

has them executed and resets 'ScrubForms to nil. If there are any production
ProgVars (see The Rest of the Productions File under PRODUCTIONS AND
SCHEDULED EVENTS, Section IV, page 4-15), Scrub has their old values and/or
unbound states restored. Finally Scrub "deallocates" the data structures
used as LiteralTrays, Nodes, and Productions.

The function Scrub2 is evaluated just after the replanning input
generator finishes making its new input, and whenever the whole Runaround
exits, either normally or via [Abort]. It nulls out the plist of each Node
ID; makes unbound and nulls out the plist of each variable in a certain list
that includes most, if not all, variables; and removes the properties named
'Preference, 'TimeVars, 'Deleters, 'Arity, 'NextNodes, 'C, and '> from
each production name.
FILE, Section VI, page 6-21, Scrub2 has them evaluated and resets
' Scrub2Forms to nil.

If there are any Scrub2Forms (see TEE DOMAIN FUNCTIONS

The function Scrub3, evaluated just after the replanning input
generator finishes making its new input, resets several of Runaround's PROG
variables to nil, executes the Scrub3Forms if any (see "FIE DOMAIN FUNCTIONS
FILE, Section VI, page 6-21, and resets 'Scrub3Forms to nil.,

Also see the documentation on editv under UTILITIES, Section XI,
page 11-1. If you have defined a function named do-edit, then editv,
which is usually called during replanning input generation, will interfere
with its definition.

9-2

SECTION X

CLEANING UP AFTER RUNAROUND

If you have done any editing using the editor interface, there will be an
edit buffer with the name "EDITVALUE". The editor interface deletes all text
from this buffer, although the text does not instantly vanish from the screen.
It is usually a good idea to kill the buffer when you're ready to leave the
machine, especially if your machine is set up so that all modified buffers are
automatically saved on logout. Also, if you have called for replanning, some
RERUN input files will have been created in the subdirectory represented by the
logical pathname fragment "SWITCH-H0ST:SWITCH;ICNOWLEDGE-BASES;", and you may
want to delete some of these files.

I

10-1

SECTION XI

UTILITIES

Several functions useful to Runaround, and probably also useful
elsewhere, are provided with the system. Many are not documented here. Some
that are documented here are the editor interface, hcopyall,
dribble-readline, and vector arithmetic.

A. THE EDITOR INTERFACE: editv

editv Variable &optional Replaceplaces Commentstring
(Variable is not evaluated; Replaceplaces and CommentString are.
Variable should be a symbol, ReplacePlaces may be any Lisp object [it
may be passed as the third argument to nsubst], and Commentstring
should be a string or nil.)

Macro

The editor interface, editv, will write the value of Variable into an
edit buffer and transfer control to the editor. Upon return to Lisp, depending
on the user's actions while in the editor, editv may reset Variable and
destructively substitute new value for old in ReplacePlaces. Returns Variable.

In more detail: editv creates an edit buffer with a name corresponding
to a file name, "EDITVALUE.LISP", on the top-level home directory of the
logged-in user.
for a "host:user;" directory logical pathname fragment to use.)
writes a lengthy comment into the edit buffer, and then writes,
"(DEFUN DO-EDIT NIL (SETQ ' I , Variable, " (QUOTE", a carriage return, the value
of Variable, three right parentheses, and a carriage return. If Commentstring
is not nil it is formatted into the edit buffer. Preparations are made to
restore the current definition or undefined state of do-edit, and do-edit
is made undefined by fmakunbound. (No preparation is made to restore the
value of the :previous-definition property of 'do-edit, which, thus, may
be destructively modified by editv.) editv then calls the function ed
with the edit buffer as argument, and ed invokes ZMACS. The user may edit
the value to which do-edit will set Variable, and/or have the defun of
do-edit evaluated by typing control-shift-e. Upon return to Lisp, the
following things happen:
given three chances; if he/she persists in typing N, the machine may halt;
but if Y is eventually entered, editv proceeds. (2) If do-edit now has
a function definition, indicating that the user gave it one in the editor, it
is evaluated, thus, probably resetting Variable, and the previous definition
or undefined state of do-edit is restored. (3) The text is cleared from the
edit buffer, but the edit buffer is not killed. (4) If the new value of Variable
is equal to the old one, Variable is reset to its old value. If the new value
of Variable is not equal to the old one, and Replaceplaces is non-nil, the
new value is destructively substituted, via nsubst, for the old one in
ReplacePlaces. Finally, (5) the value returned by editv is Variable.

(If the logged-in user has no home directory, editv prompts
editv

(1) The user is asked to type the letter Y and

Warnings: (1) I have often observed that, the first time
control-shift-e is done to the EDITVALUE.LISP edit buffer after it is
created, the Lisp machine displays a notification (to the effect that the

11-1

buffer has neither a syntax nor a base in its attribute list and the defaults
will be used; it does this despite the fact that the syntax and base are visible
to the naked eye) in a window super-imposed at the top of the editor window. If
this happens to you (on the first time you use control-shift-e, or at any
time), REFRESH THE SCREEN by typing the [Refresh] key or control-1 before you
leave editv. If you don't, and you later go back into editv, the machine
may be in Sheet Lock or Output Hold or some similar state.
always uses and re-uses an edit buffer with the same name, editv should not be
called from within itself. Don't, for instance, type meta-[Escape] and have
(EDITV <something>) evaluated while you're already in the editor because
of a call to editv. (3) If you want the buffer "ED1TVALUE.LISP" killed, you
will have to kill it yourself.
name, this editv is not destructive, except as provided for in the
Replaceplaces argument. (5) As indicated above, you should type Y when
editv asks you to, or you may cause the machine to crash.

(2) Because it

(4) Unlike the Interlisp function of the same

$*edit*$ Variable Replaceplaces Comments tring
This is the function that actually does the work when the editv macro is

Function

called. Variable is evaluated, and Replaceplaces and Commentstring are required;
otherwise, the description of editv above applies to this function as well.

B. COPYING HORRIBLE STRUCTURES: hcopyall

hcopyall STRUCTURE &optional PASSTYPES Function
This returns a copy of a "horrible" structure STRUCTURE, which may be a

circular or self-nested list or array, or contain such constructs. If two
sub-objects of STRUCTURE are eq, the corresponding sub-objects of the copy
are also eq. Any symbol passes through without being copied, as does any
object of which the type (as returned by typep, unless the object is
a named-structure-p, in which case we call its type an array) is in the
PASSTYPES argument. Unless its type is in PASSTYPES, a number (of type
fixawn, bignum, single-float, or double-float) is copied by having zero
added to it, and a list, string, or array (including named-structure-ps)
is copied to a new list, string, or array, respectively. If the type of
an object is not covered by the above, the object is copied extremely
inaccurately. Its hcopy is nil.

The original versions of hcopyall and hcopyall*, in file
SWITCH-HOST;SWITCH;HCOPYALL.LISP or .BIN, behave as described above.
The modified definition in SWITCH-H0ST;SWITCH;STRUCTURE-STORAGE.LISP or .BIN
should be in effect when Runaround is used. They return four values, of
which the first is the hcopy described above, and the other three are lists of
new instances of DEVISER data structures (respectively, LiteralTrays, Nodes,
and Productions) created for the hcopy.

C. INSERTING READLINE INPUT INTO DRIBBLE FILES: dribble-readline

If "output is being recorded" according to dribble-start, and the
operator types some input to a call to readline, this input will be echoed
to the terminal; but it may or may not be echoed to the dribble file or buffer.
The function dribble-readline resembles readline in behavior, and also
dribbles the typed input into a dribble file or buffer if there is one.

11-2

dribble-readline &optional (Inputstream standard-input)
EOF-OPTION
INPUT-EDITOR-OPTIONS Function

Arguments are similar to those to readline. (INPUT-EDITOR-OPTIONS was
the third argument to readline in a previous release and, apparently,
readline now takes only two arguments. Nevertheless, the compiler still
compiles the definition of dribble-readline without complaining, although
the definition contains a call to readline with three arguments.)
function determines whether or not output is being dribbled (by analyzing
Inputstream), calls (readline Inputstream EOF-OPTION INPUT-EDITOR-OPTIONS)
to read in a line of input, dribbles the first value returned by readline if
appropriate, and returns the first value returned by readline, i.e., a
string consisting of the typed-in input minus the terminating character.

This

Note that if dribble is not in effect, dribble-readline is essentially
equivalent to readline but with extra overhead to determine whether dribble
is in effect. Whether or not dribble is in effect, the echoing to the
terminal caused by the user's response to dribble-readline is equivalent to
that caused by the same response to plain readline. If dribble is in
effect, sometimes an extra newline may be dribbled into the dribble file or
buffer at one end of the user's response and, sometimes, readline itself
manages to dribble the response into the dribble file or buffer. If one or
both of these things happen, the dribble file or buffer will not appear
exactly the same as the terminal output. However, dribble-readline
guarantees that the typed response will be entered into the dribble file or
buffer at least once.

D. VECTOR ARITHMETIC: cwgeq, vdifference, vminus, vplus, vsum

The Lisp scalar arithmetic functions accept arguments that are explicit
numbers or forms that evaluate to numbers. For example, (+ 5 2) and
(+ (loop for I from 1 to 11 count (EVENP I)) (1- (STRING-LENGTH NIL))) both
evaluate to 7 without causing errors. The vector functions vdifference,
vminus, vplus, and vsum, and the vector predicate cwgeq, accept arguments
that are lists of numbers or forms that evaluate to lists of numbers (but not
lists of non-numerical forms that evaluate to numbers).

cwgeq Vl V2 Macro
This compares vectors Vl and V2 and returns t if Vl is component-wise

greater than or equal to V2, i.e., if each entry in V1 is greater than or
equal to the corresponding entry in V2; otherwise, it returns nil. V1 and
V2 may be explicit lists of numbers, or forms that evaluate to lists of
numbers, or one of each. The resulting lists of numbers should be of the same
length, unless one of them is nil. If exactly one argument is nil, it is
treated as a list of zeros of the same length as the other argument. If both
arguments are nil, cwgeq returns t.

vdifference V1 V2 Macro
This returns vector difference of vectors V1 and V2. V1 and V2 may

be lists of numbers, or forms that evaluate to lists of numbers, or one of
each. The resulting lists of numbers should be of the same length. The value
returned is always a new vector. Each entry in the value is the difference of
the corresponding entries from V1 and V2.

11-3

vminus V Macro
This returns the additive inverse of vector V. V may be an explicit

list of numbers, or a form that evaluates to a list of numbers. The value
returned is always a new vector. Each entry in the value is the result
returned by minus on the corresponding entry of V.

vplua &rest Vectors Macro
This returns the vector sum of all of the vectors in Vectors. The

Vectors may be explicit lists of numbers, or forms that evaluate to lists of
numbers, or some of each. The resulting lists of numbers should all be of the
same length. The result is always a new vector. Each entry in the result is
the sum of the corresponding entries from the Vectors.

vsum VI v2 Macro
This returns the vector sum of vectors V1 and V2. V1 and V2 may be

lists of numbers, or forms that evaluate to lists of numbers, or one of each.
The resulting lists of numbers should be of the same length. The value
returned is always a new vector. Each entry in the result is the sum of the
corresponding entries from V1 and V2.

11-4

SECTION XI1

UNSUPPORTED FEATURE: DISCREPANCY REPLANNING

Runaround is meant to enable replanning in circumstances where a plan
is made to achieve certain goals, and then, while that plan is being executed,
someone realizes that the given set of goals was not the right set after all.
Replanning would also be needed if the plan were in the process of execution,
and someone realized that the plan was being executed improperly, or some of
the steps were not working for some other reason.
ready to handle replanning in that second situation, but does include some
experimental facilities for it.

Runaround is not fully

A plan made by SWITCH may be viewed as a simulation, because it contains
descriptions of all of the relevant effects of its activities, as well as the
times the activities are to start and finish. The effects of the activities
constitute predictions about the states of the world that should be observed
at different times during execution of the plan. If an observation
contradicts a prediction from the plan, that observation and prediction are
referred to as a discrepancy.
prediction in the plan is correct, and in that case, doubt is cast on the
predictions that the goals will be achieved when the execution of the plan is
complete. If the achievement of those goals is important, a new plan will
have to be generated and substituted for some final segment of the existing
plan. Runaround, with considerable operator interaction, may be able to
generate such a new plan.

A discrepancy indicates that not every

If you intend to experiment with discrepancy replanning, your knowledge
base will have to be set up so that Runaround will obtain some predictions
out of the plan. Although it was remarked above that the effects of the
plan's activities constitute predictions, in some domains many of these
effects are not actually observable, or are not worth observing.
the program does not automatically regard every assertion as a prediction.
The program expects the knowledge base designer to have provided criteria
that it will use to separate the unobservable or unimportant effects from the
observable and important ones, which are the predictions.
be a predicate asserting some fact about the world (i.e., an instantiated
consequent-assertion of some production) at some time; or it may be a
prediction that some activity begins, ends, or occurs instantaneously at some
time, if that fact can and should be determined independently of predictions
of the other kind. The criteria that Runaround uses to decide whether or
not to generate predictions of the first kind are declared in the productions
file in a Measurables declaration (see Measurable Relations under The Rest
of the Productions File under PRODUCTIONS AND SCHEDULED EVENTS,
Section IV-J, page 4 - 2 4) . The criteria for deciding whether or not to
generate predictions of the second kind are declared as the
MeasurableProduction options in the individual production definitions in .the
productions file and the scheduled events file (see the beginning of
PRODUCTIONS AND SCHEDULED EVENTS, Section IV, page 4-1).

Therefore,

A prediction may

12-1

A. IN RUNAROUND BETWEEN CALLS TO THE PLANNER

1. Any Discrepancies?

Ordinarily, entry into Runaround and the first planning run are
not concerned with discrepancies.
DRFlag, to Runaround is non-nil.
last paragraph of this section.)
RUNNING THE SYSTEM, Section VIII, until the planner exits with a saved plan
containing predictions, and the user calls for replanning.
a time in answer to its question for the new plan's execution start time,
Runaround will ask, "Any discrepancies?" Answer with a single character,
Y for Yes or N f o r No, and no carriage return. If you answer N,
Runaround proceeds normally as described above under RUNNING THE SYSTEM.
If you answer Y, the program displays, "Here are the predictions. You tell
me which ones were false and how.", followed by a description of each
prediction. At this point the predictions are stored as lists of the
following form:

(The exception is when the sixth argument,
That case will be discussed in the
The program behaves as described above under

After you give it

(cmem predict <predicate> at <time> <LiteralTray>)

The symbol 'cmem is a relic of an old execution monitor. The
<predicate> is the Predicate of the <LiteralTray>. The <predicate>
may be an actual predicate in the knowledge base language, in which case the
<LiteralTray> is an assertion of a Node in the plan and the <predicate>
is its Predicate. On the other hand, the <predicate> may be a start
announcement, a finish announcement, or an announcement of the instantaneous
occurrence of an activity. Such a <predicate> will be a two-element list,
in which the first element is a symbol of which the pname is the result of
concatenating the activity's production-type onto the end of the appropriate
one of the strings, "Begin", "End", or "Instantaneous". The second element of
this kind of <predicate> is the activity's production name. In this case,
<LiteralTray> is a specially created LiteralTray that holds <predicate> in
its Predicate field.

As you see the predictions displayed, they will not appear in the above
form. Instead, they are numbered 1 to however many there are, and displayed
without their <LiteralTray>s on separate lines, as in this segment of the
prediction display from a blocksworld run.

5. (CMEM PREDICT (ON A C) AT 2.0)
6 . (CMEM PREDICT (CLEAR B) AT 3.0)
7. (CMEM PREDICT (ON B A) AT 3.0)

The times, 2.0 and 3.0, are in seconds. Actually the times of the
predictions are converted into hh:mm:ss.decimal form for this display, but the
result looks the same as the number of seconds when it is less than 60.

12-2

2. Describing Discrepancies to the Program

Number of first discrepancy, or "DONE" :
Number of next discrepancy, or "DONE", or "R" to review:
Review which prediction?
carriage return.)

(Answer with number or "ALL", and

After displaying the list of predictions, the program asks you for
"Number of first discrepancy, or /"DONE/":".
terminate it with a carriage return. If you answer with the character-
sequence DONE, Runaround assumes that you have already told i t all of the
discrepancies (so at this point, because you haven't told it any, there must
not be any), and moves on to the next stage of replanning input generation.
If you answer with the number of a prediction, Runaround prompts you with
questions to determine what kind of discrepancy it is, as will be explained
shortly. The answer R is also acceptable here, although the request for
"Number of first discrepancy, or /llDONE/":" doesn't say so; see the next two
paragraphs for what happens if you answer R. If you answer with a positive
integer that is too large to be the number of a discrepancy, Runaround
displays, "There's no prediction by that number." and proceeds to the next
prompt. If you answer with a non-negative number that is not a positive
integer, it will cause an error. Any other answer (including a negative
number) is ignored, and Runaround will go to its next prompt. The next
prompt is "Number of next discrepancy, or /"DONE/", or /"R/" to review:".
Answers to it have the same effects as they did to the previous prompt, and
the prompt will keep reappearing until you eventually answer DONE (or abort,
or otherwise leave this function).

Type in your answer and

The R answer causes Runaround to Review one or all of the
predictions. First it asks, "Review which prediction? (Answer with number or
/"ALL/", and carriage return.)"
that prediction will be displayed again, and if you answer ALL, all of the
predictions will be displayed again.
already been declared to be a discrepancy, it will be followed by the
displayed announcement, "*** [number] is already known as a bad prediction!"
on a separate line. The predictions are not displayed in this instance in
exactly the same form as they were the last time. The times are not converted
into hh:m:ss.decimal form, but appear as numbers of seconds, and there is a
trailing space.

If you answer with the number of a prediction,

If a prediction displayed here has

For example, the above three predictions would appear as

5. (CMEM PREDICT (ON A C) AT 2)
6. (CMEM PREDICT (CLEAR B) AT 3)
7. (CMEM PREDICT (ON B A) AT 3)

when displayed in a Review. After the single numbered prediction, or ALL
predictions, are displayed, the Review is over, and the "Number of next
discrepancy, or /"DONE/", or /''R/'' to review:" prompt appears. If you
answer "Review which prediction? ..." with anything other than ALL or the
number of a prediction, Runaround complains, "I don't understand that.", and
the "Number of next discrepancy, or /"DONE/", or /'W" to review:" prompt
appears.

12-3

To declare a prediction as a discrepancy, type its number and a carriage
return to answer the "Number of first discrepancy, or /"DONE/":" or "Number of
next discrepancy, or /"DONE/", or /"R/" to review:" prompt.
the number, Runaround prompts you for information on what kind of discrepancy
is involved. There are some answers to some of the prompts that will have the
effect of making Runaround disregard its instructions that this prediction is
a discrepancy, so you have a chance to recover from a mistyped prediction number
if you know how. The prompts differ depending on whether the relation in the
prediction's predicate is a functional relation or an ordinary relation.
code for dealing with contradicted start announcements, finish announcements,
and instantaneous-occurrence announcements is incomplete.)

After you type

(The

3 . Function-Value Discrepancies

Prediction asserts function value ...
Did the function take this value early or late?
What time?

What is actual function value at that t i m e ?

If the prediction is of a function value, the next prompt is

"Prediction asserts function value: [predicate] at [number] seconds
([hh:mm:ss.decimal form of time])
What is actual function value at that time?"

Runaround's treatment of the discrepancy depends on whether or not the
answer you type in (terminated with a carriage return) is equal to the
predicted value, and its treatment may not agree with your interpretation of
the questions. If you type the predicted value as the answer, Runaround
announces, "That's the same as predicted.", and asks, "Did the function take
this value early or late?"
return. The possible answers here are E for Early, L for Late, and N
for No; the [Help] key will cause a short help message to appear. If you
answer E or L, Runaround next asks, "What time?", and waits for you to
type in a line of input. The function ReadTime, defined in the system
SWITCH-COSMIC, reads and processes the line of input here. It will accept a
time as a number of seconds or an hh:mm:ss.decimal form, slashified or not.
If you type text that contains characters besides digits, colons, periods,
slashes, and vertical slashes, ReadTh complains, "I don't understand that.
Type a time as a number of seconds or as an HH:MM:SS character-sequence.", and
gives you another chance. If you type text that contains only the above
allowed characters, but does not parse into a number or an hh:rmn:ss.decimal
form (e.g., because it contains too many colons or periods), ReadTime may
silently (i.e., without complaining as above, without even seeming to be doing
anything at all) give you another chance; or it may generate an error.

Answer with a single character and no carriage

When it obtains the time, Runaround compares it to the prediction time
to check that it is whichever of Early or Late it was supposed to be. If not,
the program displays, "That's not early.", or, "That's not late.", does not
make a discrepancy of this prediction, and returns to the "Number of next
discrepancy, or /"DONE/", or /"R/" to review:" prompt. If it is Early or
Late, however, Runaround makes an Early or Late discrepancy and returns to
that prompt.

12-4

If you answer "Did the function take this value early or late?" with N
for No, then the prediction wasn't a discrepancy, because the function took on
the predicted value at the predicted time. In this case Runaround displays,
"Then don't waste my time.", and returns to the "Number of next discrepancy,
or /"DONE/", or /llR/ll to review:" prompt.

If the answer you type to "What is actual function value at that time?"
is not equal to the predicted function value, Runarouud makes a discrepancy,
asserting that the function takes on your different value at the predicted
time, and proceeds to the "Number of next discrepancy, or /"DONE/", or /"R/"
to review:" prompt.
a field where other discrepancies contain such lists as (Ceased <time>),
(Early <time>), (Late <time>), or (Predict <time>). If the functional
predicate itself begins with 'Ceased, 'Early, 'Late, or 'Predict, the
replanning input generator may misinterpret this discrepancy as a Ceased,
Early, Late, or Predict discrepancy. For this reason, it is not a good idea
to have functional relations named 'Ceased, 'Early, 'Late, or 'Predict in your
knowledge base if you want to try discrepancy replanning.

The discrepancy has the observed functional predicate in

4. Early Discrepancies

Did the assertion become true early?
What time?

If the prediction that you are trying to enter as a discrepancy is not
of a function value, but of an ordinary assertion, Runaround will use a
different set of questions to determine what kind of discrepancy it is. The
first question is, "Did the assertion become true early?"; answer with Y or
N and no carriage return. If you answer Y, Runaround asks, What time?",
and waits to read your typed answer with ReadThe (see the previous page in
this section under Function-Value Discrepancies).
time, it compares that to the predicted time to check that it is, indeed,
early. If not, Runaround displays, "That's not early.", and returns to the
"Number of next discrepancy, . . . I 1 prompt without making a discrepancy of
this prediction. If it is Early, Runaround does make an Early discrepancy
and returns to that prompt. Note that every time it actually records a new
discrepancy of an ordinary, non-functional assertion, Runaround searches for
other predictions that predict the same assertion. It displays, "Looking for
other predictions with the same predicate not already known as discrepancies,
just so I can inform you of their numbers . . . I 1 , looks for them and displays
the numbers, if any, or else, "but I don't find any."

When it receives the

5. Late Discrepancies

Did the assertion become true late?
What time?

If the answer to "Did the assertion become true early?" is N the
prediction could be contradicted in some other way, so Runaround a cs more
questions, starting with, "Did the assertion become true late?" Again, answer
with Y or N and no carriage return. If you answer Y, Runaround

12-5

displays, "What time?", and waits to read your typed-in answer with
ReadTime. It checks to see if the time is Late before making a Late
discrepancy, and returns to the "Number of next discrepancy, . . . prompt.

6. Ceased Discrepancies

Did the prediction become true on schedule but fail to hold long
enough?
When did it cease to hold?

If the answer to "Did the assertion become true late?" is N, the next
question is, "Did the prediction become true on schedule but fail to hold long
enough?" Again, answer with Y or N and no carriage return. If you answer
Y, Runaround asks, "When did it cease to hold?", and waits to read your
typed input with ReadTime.
compare it to anything, but makes a Ceased discrepancy, and returns to the
"Number of next discrepancy, . . ." prompt.

This time when it receives the time, it does not

7. Predict Discrepancies

Do you expect that the prediction will become true later?
What time?

If the answer to "Did the prediction become true on schedule but fail to
hold long enough?" is N, Runaround displays, "Then the predicted assertion
must not have become true at all.", and asks, "DO you expect that the
prediction will become true later?"
return. On Y the replanning input generator asks, "What time?", reads typed
input with ReadTime, compares it to the prediction time, makes a Predict
discrepancy if the typed-in time is later, or else displays, "That's not
later.", and returns to the "Number of next discrepancy, . . .'* prompt. On
N the replanning input generator creates a Late discrepancy and returns to
that prompt.

Answer with Y or N and no carriage

8. Start Times of Next Plan

As it collects the discrepancies, Runaround examines their types
and times to determine the start time of the new plan. You have already
answered a question, "What time does new plan's execution start?" That answer
sets the time when new Actions can be scheduled to start, and when activities
from the old plan can be cancelled (depending on their irrevocability) in the
new plan. However, in making the next plan, the planner can still schedule
Events, ForwardEvents, and Inferences to start before that start time you
provided in answer to that question. Indeed, the planner may be required to
schedule ForwardEvents, triggered by the earliest discrepancies, during that
time interval. The earliest time that any discrepancy occurs is known as
NewTimeO, and this is what the planner must consider as the start time of the
new plan. The time at which execution of new Actions can begin (your answer
to What time does new plan's execution start?") is RealStartTime.

12-6

9. Edit, Forget It, Print, Quit, or Trust Me?

After you finally answer DONE to the request for a prediction
number, the replanning input generator proceeds through behavior described
above under RUNNING THE SYSTEM, Section VIII.
that it is generating rerun phantom goals; but the next input you provide
should be the answer to "Edit, Forget it, Print, Quit, or Trust me?" about the
tentative replan goals list. Remember that the Trust me option was introduced
for the case when there are discrepancies, but no changes to the goals; it
causes the tentative replan goals list to become the firm replan goals list.
(See the paragraphs about the same question under In Runaround between Calls
to the Planner under RUNNING THE SYSTEM, Section VIII-C-6, page 8-12.)

It may display announcements

10. Discrepancy Interference With In-Progress and Irrevocable
Activities

I have encountered an ... activity in the old plan which runs
afoul of the discrepancies. I've made a production to preserve
the activity, but you get to go over it first:

T y p e E to Edit production, K to Keep it as it currently is, or R
to Revoke it:

0 . .

After you have established the replan goals list, ReadIrrevocablesForRerun
is called to process the old plan's activities to determine the initial state
and scheduled events for the new plan. Any activity of the old plan that was
scheduled to begin at or after NewTimeO, but before RealStartTime, is
automatically irrevocable. An IrrevocablyScheduled Scheduled Event is created
to preserve it, unless it is a ForwardEvent or an Event that apparently will
chain forward if required to. As in the case of changed-goal replanning
without discrepancies, an activity that was scheduled to start at or after
RealStartTime and is Irrevocable? also has an IrrevocablyScheduled Scheduled
Event written to preserve it.
NewTimeO, but finish after NewTimeO, has a Finishold Scheduled Event written
to preserve its completion.

Any activity that was scheduled to start before

These IrrevocablyScheduled and Finishold Scheduled Events do not
necessarily go into the replanning input automatically. If the activity that
such a Scheduled Event is supposed to preserve has any of its assertions,
preconditions, or upstream preconditions (i.e., preconditions of other
activities that establish this activity's preconditions, or preconditions of
still earlier activities which establish their preconditions, etc.)
contradicted by discrepancies, it probably will not actually occur as the raw
Scheduled Event describes it. The user will be asked to modify the Scheduled
Event so that it accurately reflects what will happen when the agents attempt
to complete the in-progress activity, or to execute the irrevocable activity,
in the unexpected environment.

When it encounters such a dubious Scheduled Event, the replanning input
generator displays, "I have encountered an [irrevocable or in-progress]
activity in the old plan which runs afoul of the discrepancies. I've made a

12-7

production to preserve the activity, but you get to go over it first:".
it displays the new Scheduled Event and at least one of these two
announcements :

Then

"The node that this comes from depended on some precondition that
is contradicted by the discrepancies."

"The following assertions of the production are contradicted by
discrepancies: [with the contradicted assertions]"

Next, you will be asked to choose what to do with the Scheduled Event
and given three choices, "Type E to Edit production, K to Keep it as it
currently is, or R to Revoke it:". Answer with a single character and no
carriage return.
Event with EDITV. Before sending you to ZMACS, the replanning input generator
displays, "I strongly advise against changing the duration from zero to a
nonzero number or vice versa; and if the duration is zero, I strongly advise
against altering the window." This warning is meant to protect the work that
has gone into preserving the order of "simultaneous" zero-duration activities
that actually are time-ordered, because some of them establish preconditions
for others. If accuracy demands that the warning be disobeyed, such
disobedience would probably be acceptable if the activity that originated this
Scheduled Event is not part of any such group of instantaneous activities, and
will not become part of one if its duration is reset to zero. When you return
to Lisp from ZMACS, EDITV will ask you to type Y, as usual. After that, the
"Type E to Edit production, K to Keep it as it currently is, or R to
Revoke it:" prompt will repeat, and you may edit the Scheduled Event again if
you choose to do so. If you eventually type K to the prompt, the Scheduled
Event (in the form in which it last emerged from the editor, or its original
form if it was never edited) will be placed into the replanning input, and
ReadIrrevocablesForRerun will continue processing the old plan. If you type
R, ReadIrrevocablesForRerun forgets about this Scheduled Event and the
corresponding irrevocable or in-progress activity of the old plan, and resumes
processing the old plan.

If you type E, you will be allowed to edit the Scheduled

11. Discrepancy Effects on New Initial State

While it has been processing the activities in the old plan to
extract in-progress and irrevocable activities, ReadIrrevocablesForRerun has
also been collecting the assertions established by early activities of the old
plan for the new initial state. It collects these at first without regard to
discrepancies. When it has finished looking at all of the activities in the
old plan, it modifies the new initial state that it has collected, so that it
will reflect the earliest discrepancies.

There are several reasons why a discrepancy would have an effect on the
new initial state, i.e., the state of the world at NewTimeO. It could be the
case that an assertion was observed to become true at NewTimeO when the old
plan predicted that it would become true later. Or, some assertion that the
old plan predicted at NewTimeO might not have become true then, but, instead,
have been observed or expected to become true later, or not have been expected
to become true at all. Or, some assertion that was observed to become true on
schedule failed to remain true as long as expected, first failing at NewTimeO.

12-8

Finally, it could be the case that some function took on an unexpected value
at NewTimeO, and that was not just a case of an expected value occurring at an
unexpected time. In each case, the replanning input generator inserts the
observed fact into the new initial state, replacing the previous new-initial-
state assertion, if any, that it contradicts. In each case but the last
(unexpected function value), it also examines the old-plan activity that was
supposed to have established the expected fact, to see if that activity had
assertions that were not turned into predictions. If so, these unpredicted
assertions might incorrectly appear in the new initial state, or they might
incorrectly not appear in the new initial state. The program queries the user
to find out what to do with the unpredicted assertions, if any.

I#, the node of ... which became true early at the earliest
contradiction time, has unpredicted assertions. Will they be true at
that time too?
Assert this unpredicted assertion at hh:mm:ss.decimal:... ?

For an Early discrepancy, when the expected fact was observed to become
true early, and the time it became true is the earliest discrepancy time, it
might be the case that the fact became true early because the activity that
established it finished early. In that case, the other assertions established
by that activity would presumably also have been established at NewTimeO. The
program assumes that any of these assertions that were turned into predictions
will have been declared as Early discrepancies if they are Early
discrepancies. If there are any assertions of the same activity that were not
turned into predictions, you will not have been able to declare them as
discrepancies; so the program gives you the opportunity to change them now.
If it finds any unpredicted assertions of that activity, it displays, "[Node
ID], the node of [predicate] which became true early at the earliest
contradiction time, has unpredicted assertions. Will they be true at that
time too?'' Typing the [Help] key now will cause a short help message to be
displayed. Answer with a single character and no carriage return.
Y for Yes means that the unpredicted assertions will be entered in the
replan initial state, replacing the assertions they contradict, if any.
Answering N for No means that the unpredicted assertions will not go into
the replan initial state. Answering S for Singly means that you have the
opportunity to review the unpredicted assertions one at a time.
S then the program will ask, "Assert this unpredicted assertion at
[hh:mm:ss.decimal form of NewTimeO]:
Y or N with no carriage return, for each unpredicted assertion.
answer Y, the unpredicted assertion in question will be entered in the
replan initial state, replacing the assertion it contradicts, if any. If you
answer N, this assertion will not be entered in the new initial state.

Answering

If you answer

[predicate]?", and expect an answer of
If you

12-9

d, the node of ... which was planned to become true at hh:mm:ss.decimal
and did not, has unpredicted assertions.
is the earliest contradiction time.
assertions are true at that time?
Contradict this unpredicted assertion at hh:mm:ss.decimal: 3

Trying to contradict functional assertion ... by inserting assertion of
previous function value.
in, and terminate your answer with a carriage return (or just type a
carriage return, in which case I'll just drop this functional assertion
without trying to replace it):

hh:mm:ss.decimal
Shall I act as if the unpredicted

But I can't find previous value. Please type it

A Late or Predict discrepancy arises when the expected fact was observed
not to have become true at its expected time. It might be the case that the
fact did not become true on time because the activity that was supposed to
have established it did not finish on time. In that case, the other
assertions that were supposed to have been established by that activity
presumably did not become true on time either. If the predicted time when the
assertions should have been established is the earliest discrepancy time, some
of these assertions that were supposed to have been established by that
activity may be in the new initial state.
these assertions that were turned into predictions will have been declared as
Late o r Predict discrepancies, if they are Late or Predict discrepancies. If
there are any assertions of that activity that were not turned into
predictions, you will not have been able to declare them as discrepancies, so
the program gives you the opportunity to change them now. If it finds any
unpredicted assertions of that activity, it displays "[Node ID], the node of
(predicate) which was planned to become true at (hh:mm:ss.decimal form of
NewTimeO) and did not, has unpredicted assertions. (hh:mm:ss.decimal form of
NewTimeO) is the earliest contradiction time. Shall I act as if the
unpredicted assertions are true at that time?" Type the [Help] key for a help
message, or answer with a single character (and no carriage return), Y for
Yes, N for No, or S for Singly. If you answer Y, the unpredicted
assertions will stay in the replan initial state where they already reside.
If you answer N, the unpredicted assertions (of this activity) will be
removed from the replan initial state. If you answer S, the program will
ask, "Contradict this unpredicted assertion at (hh:mm:ss.decimal form of
NewTimeO): (predicate)?", and expect Y or N as an answer, for each of the
activity's unpredicted assertions; it will remove from the replan initial
state the assertions for which you answer Y.

The program assumes that any of

Each ordinary, non-functional assertion that is removed from the replan
initial state is replaced by its negation, and the program displays, "Negating
(predicate)." For each functional assertion removed from the replan initial
state, the program tries to find the previous value, if any, that the function
should have had, according to the old plan. If it succeeds, it replaces the
removed assertion with the assertion of the previous value and displays,
"Replacing (false functional assertion) with previous assertion (previous
functional assertion)." If it does not find a previous function value
asserted in the old plan, it displays, "Trying to contradict functional
assertion [predicate] by inserting assertion of previous function value. But
I can't find previous value. Please type it in, and terminate your answer
with a carriage return (o r just type a carriage return, in which case I'll
just drop this functional assertion without trying to replace it):". In that

12-10

case, follow those displayed instructions; if you do type in a previous
function value (i.e., just the last argument to the functional relation), it
will enter an assertion of that value into the replan initial state. (By the
way, if the Late or Predict discrepancy itself involved a functional assertion,
the replanning input generator also replaces that predicted assertion with an
assertion of the previous function value in the new initial state, if it can
find the previous function value. If it cannot find the previous function
value, it just quietly drops the erroneous predicted assertion.)

..., established by n#, ceased at hh:mm:ss.decimal, which is the
earliest discrepancy time. n# also has unpredicted assertions. Will
they also have ceased at hh:mm:ss.decimal?
Make this assertion, ..., cease at hh:mm:ss.decimal? ..., which ceased, is a functional assertion. Does the function have a
new value?
Please type in the new value and terminate your answer with a carriage
return:

A Ceased discrepancy arises when an expected fact was observed to have
become true, but not to have lasted for its expected duration. In this case
it is not obvious that the ceasing of one assertion suggests the ceasing of
other assertions of the same activity. Nevertheless, if the time at which a
predicted assertion becomes false is the earliest discrepancy time, the
program still inquires whether or not it should assume that the unpredicted
assertions of the same activity are true at NewTimeO: "(predicate),
established by (Node ID), ceased at (hh:mm:ss.decimal form of NewTimeO), which
is the earliest discrepancy time. (Node ID) also has unpredicted assertions.
Will they also have ceased at (hh:mm:ss.decimal form of NewTimeO)?" Again,
type the (Help) character for a help message, or answer with a single
character, Y for Yes, N for No, or S for Singly. On Y, the replanning
input generator will remove from the initial state any of this activity's
unpredicted assertions that are still there. On N, it will make no change
to this activity's unpredicted assertions in the replan initial state. On
S, for each of this activity's unpredicted assertions that it finds in the
replan initial state, it will ask, "Make this asserticn, (predicate), cease at
(hh:mm:ss.decimal form of NewTimeO)?"
N, and no carriage return. On Y, the assertion will be removed from the
replan initial state, and on N, it won't.

Answer with a single character, Y or

The replanning input generator replaces each ordinary, non-functional,
unpredicted assertion that it removes here with its negation. For a
functional assertion, it tries to find out what value the function did have
and place an assertion of that value in the replan initial state. It
displays, "(predicate), which ceased, is a functional assertion. Does the
function have a new value?", and waits for you to answer Y or N.
answer N, it drops the functional assertion from the replan initial state
and does not replace it. If you answer Y, it displays, "Please type in the
new value and terminate your answer with a carriage return:". In this case,
do what it requests, and it will replace, in the replan initial state, the
ceased functional assertion with an assertion that the function had the value
that you typed in.
this series of interactions cannot be a contradiction of a functional
assertion, as functional predictions never become Ceased discrepancies. This
is probably best regarded as a deficiency in the Runaround theory of
discrepancies.)

If you

(Note that the original Ceased discrepancy that started

12-1 1

For a discrepancy in which a function took on an unexpected value, the
replanning input generator just replaces, in the replan initial state, the
assertion of the expected value with an assertion of the observed value. It
does not try to do anything about unpredicted assertions of the activity that
was supposed to have established the expected value.

Note that if an activity has several assertions that do become
predictions that are contradicted at NewTimeO, the replanning input generator
may ask you several times what to do about the unpredicted assertions of that
activity.
because of their relation to an Early discrepancy, they stay there even if you
instruct the replanning input generator not to insert them in response to a
later question. For that matter, if you instruct the replanning input
generator to insert them more than once, it will. Once assertions are removed
from the replan initial state because of their relation to a Late, Predict, or
Ceased discrepancy, they stay removed, even if you instruct the replanning
input generator to leave them there in response to a later question. Also, in
this case, the Singly review in later questions will not find the removed
assertions.

Once new assertions are inserted into the replan initial state,

Note also that there may be irrevocable activities that depend on these
unpredicted assertions which may be removed from the replan initial state. In
the case of actual discrepancies, the replanning input generator notices such
activities that depend on the contradicted assertions, and gives the user an
opportunity to edit the corresponding new Scheduled Events. In the case of
the unpredicted assertions, the user does not automatically receive such an
opportunity.

After the attempt to make the replan initial state reflect the earliest
discrepancies, the replanning input generator wipes out some replan-initial-
state assertions, as described above in WipeOut under The Rest of the
Productions File from PRODUCTIONS AND SCHEDULED EVENTS, Section IV-J,
page 4-24.

12. Discrepancies After Initial State

Finally, ReadIrrevocablesForRerun makes new Scheduled Events to
describe the discrepancies that occur after NewTimeO.

13. Now Here's a LISP BREAK . * .

After that comes the announcement about the LISP BREAK, and the
break, as described under RUNNING TEE SYSTEM, Section VIII-C-7, page 8-16.
You and the program have already had extensive opportunities to adjust the
program's understanding of the replan initial state and the in-progress and
irrevocable activities. However, you have not yet had the opportunity to
correct the knowledge base of assumed capabilities of the agents for which
SWITCH is planning. The discrepancies may be a sign that some of those
capabilities are inaccurately described in the knowledge base. At this break,
you might want to try to correct any such inaccuracies. As the message
displayed just before the break reads, "You may wish to edit such variables as
RerunGoalsList, RerunInitialStateList, RerunProductionsList, and

12-12

RerunScheduledEventsList." When you [Resume] from the break, Runaround
finishes writing the input files and passes them to the planner for a replanning
run. The displayed announcements and user interaction in the discrepancy
replanning run have the same form as those in an ordinary run. If the planner
finds a solution, you may save a copy of that solution. If the planner exits
with a saved plan, you may call for replanning again, with or without
discrepancies.

B. DRFLAG, AND ACTIONS AFTER REALSTARTTIME

It was remarked above that the planner, on a discrepancy replanning run,
can schedule new Events, ForwardEvents, and Inferences to start at any time
after NewTimeO, but it can schedule no new Actions to start until
RealStartTime. It is prevented from scheduling Actions too early by the device
of including an extra precondition, '(ReplanGo), among the preconditions of each
attempted expansion using an Action, along with the Action's own preconditions.
'(ReplanGo) is established by a Scheduled Event, which the replanning input
generator creates and inserts, without fanfare, in the rerun scheduled events
file. This event has the name 'NewExecutionBegins, the type 'Event, no
preconditions, '(ReplanGo) as its sole consequent assertion, window At
RealStartTime, and no other declared options (so its duration will default to
zero). It is intended that there be no other way to achieve '(ReplanGo) and,
thus, new Actions will be constrained to begin after RealStartTime.

If DRFlag, the sixth optional argument to Runaround, is non-nil, it
will affect the first planning run. In this case, SWITCH will include
'(ReplanGo) among the preconditions of each attempted expansion using any
Action, even though Runaround has no old plan, predictions, or observations
and, hence, no discrepancies. SWITCH will not be able to schedule any Actions
unless there is some way to tie in '(ReplanGo) or to achieve it without using an
Action. There would be such a way if the knowledge base files input to the
first planning run had been created by Runaround (in an earlier call to it) in
response to a call for discrepancy replanning. Thus, DRFlag provides a way
for discrepancy replanning to resume after Runaround exits, as long as the
files are saved; just call Runaround again with a non-nil value for
DRFlag, and specify the old discrepancy-replanning knowledge base files.
can resume replanning with changed goals and no discrepancies after Runaround
exits, by.calling Runaround again with nil for DRFlag and specifying the
old replanning knowledge base files.) The generation of '(Rep1anGo)'s for
Actions in the first planning run is the only effect of a non-nil DRFlag
argument to Runaround; EZFlag is reset to nil immediately after you call for
replanning by typing R to the "->" prompt.

(You

12-13

SECTION XI11

REFERENCES

1.

2.

3.

4.

Vere, S.A., Planning in Time: Windows and Durations for Activities and
Goals, JPL D-527, Jet Propulsion Laboratory, Pasadena, California,
November 1981, revised July 1982. Also appears in Transactions of the
IEEE on Pattern Analysis and Machine Intelligence, Vol. PAMI-5, No. 3,
pp. 246-267, May 1983.

Porta, €I. J., "Dynamic Replanning," Paper #86-0616 appears in Proceedings
of ROBEXS '86: Second Annual Workshop on Robotics and Expert Systems,
Robotics and Expert Systems Division of the Instrument Society of
America, NASA/Johnson Space Center, Houston, Texas, June 4-6, 1986.

Vere, S.A., "Splicing Plans to Achieve Misordered Goals," Proceedings of
the Ninth International Joint Conference on Artificial Intelligence,
Vol. 2, pp. 1016-1021, Morgan Kaufmann Publishers, Inc., Los Altos,
California, 1985.

Vere, S.A., "Temporal Scope of Assertions and Window Cutoff,"
Proceedings of the Ninth International Joint Conference on Artificial
Intelligence, Vol. 2, pp. 1055-1059, Morgan Kaufmann Publishers, Inc.,
Los Altos, California, 1985.

13-1

APPEND ICES

The following are three files pertaining to a run of R U " D :

A. PRODUCTIONS FILE e e . . A-2

B. PROBLEMFILE B-1

C. DRIBBLEd OUTPUT . - e C-1

Carriage returns have been added to the problem file and the DRIBBLEd
output in order to break long lines cleanly, and carriage returns have been
added to, or deleted from, the very ends of some of the files. Comments in
italics have been added to the DRIBBLEd output to describe the editing, which
does not DRIBBLE because it takes place outside of the Lisp listener.
Otherwise, the copies of the files below are left as the program used or
DRIBBLEd them.

A- 1

Productions File: A copy of >PORTA>SWITCH>KNOWLEDGE-BASES>BLOCKPRODS.

BLOCKSWORLD

(Measurables (CLEAR (OR (NOT (PhantonNode? (f e t c h Node o f A s s e r t i o n)))

(COVERED (OR (NOT (PhantonNode? (f e t c h Node o f A s s e r t i o n)))

(HELD (OR (NOT (PhantonNode? (f e t c h Node o f A s s e r t i o n)))

(ON (OR (NOT (PhantonNode? (f e t c h Node o f A s s e r t i o n)))

(ONTABLE (OR (NOT (PhantonNode? (f e t c h Node o f A s s e r t i o n)))

(Negation? Asse r t i on)))

(Negation? Asse r t i on)))

(Negation? Asse r t i on)))

(Negation? Asse r t i on)))

(Negation? A s s e r t i o n))))

(Product ions

(PICKUP Act ion
((ONTABLE ?block)

(CLEAR ?block) 1
> ---

((HELD ?block)
(NOT (CLEAR ?block))
(NOT (ONTABLE ?b lock)))

(Dura t i on 1))

(PUTDOWN Act ion
((HELD ?block)

(*Constant ?b lock))
> ---

((CLEAR ?block)
(ONTABLE ?block)
(NOT (HELD ?b lock)))

(Dura t i on 1) 1

, (STACK Act ion
((OR (*Constant ?upperblock)

(*Constant ? lowerb lock))
(*Goal (ON ?upperblock ?lowerblock))
(CLEAR ?lowerblock)

I (HELD ?upperblock))

((CLEAR ?upperbl ock)
> ---

(ON ?upperblock ?lowerblock)
(NOT (HELD ?upperblock))
(NOT (CLEAR ?lowerb lock)))

(Dura t i on 1))

(UNSTACK Act ion
((*A l ready (ON ?upperblock ?lowerblock))
(CLEAR ?upperblock)
(OR (*Constant ?upperblock)

(*Constant ? lowerb lock)))
> ---

((HELD ?upperblock)
(CLEAR ?lowerblock)
(NOT (CLEAR ?upperblock))
(NOT (On ?upperblock ? lowerb lock)))

(Dura t i on 1)))

(Wipeout
(CLEAR (AND (EQ (CAR Pred2) 'NOT)

(PROG (I nner2)
(RETURN

A- 2

-
~

(SELECTQ (CAR (SETQ I n n e r 2 (CADR P r e d 2)))
(HELD (EG (CRDR I n n e r 2) (CADR P r e d l)))
(ON (EQ (CADDR I n n e r 2) (CADR P r e d l)))
(OTHERWISE N I L) 1

(HELD (AND (EQ (CAR P r e d 2) 'NOT)
(PROG (I n n c r 2)

(RET URN
(SELECTQ (CAR (SETQ I n n e r 2 (CADR P r e d 2) 1

(CLEAR (EO (CADR I n n e r e) (CADR P r e d l)))
(ON (MEMQ (CADR P r e d l) (CDR I n n e r 2)))
(ONTABLE (EQ (CADR I n n e r 2 1 (CADR P r e d l)))
(OTHERWISE N I L))))))

(ON (AND (EO (CAR P r e d 2) 'NOT)
(PROG (I n n e r a)

(RETURN
(SELECTQ (CAR (SETQ I n n e r 2 (CADR P r e d 2)))

(CLEAR (EQ (CADR I n n e r 2 1 (CADDR P r e d l)))
(HELD (MEMQ (CADR I n n e r 2 1 (CDR P r e d l)))
(ON (COND ((E Q (CADR I n n e r 2 1 CCADR P r e d l))

(NEQ (CADDR I n n c r 2) (CRDDR P r e d l)))
((E a (CADDR I n n e r 2 1 (CADDR P r e d l)))))

(ONTABLE (EQ (CADR I n n e r 2 1 (CADR P r e d l)))
(OTHERWISE N I L))))))

(ONTABLE (AND (EQ (CAR P r e d 2) 'NOT)
(MEMQ (CAADR P r e d 2) '(HELD ON))
(EQ (CADADR P r e d 2) (CADR P r e d l)))))

STOP

A- 3

Problem File: A Copy of >PORTA>SWITCH>KNOWLEDGE-BASES>BLOCKSPROB.

I

BLOCKPROBLEM

(INITIALSTATE (CLEAR A) (CLEAR E) (CLEAR C) (CLEAR D) (ONTFIBLE A)
(ONTABLE E)
(ONTABLE C) (ONTFIBLE D))

(GOALS ((WINDOW AT 8 .) (ON A C) (ON B A) (ON D 8)))

STOP

B- 1

DRIBBLEd Output

(Runaround)
I30 you wont t o see t h e usual p r i n t e d announcenents? (Y o r N) Yes.
S h a l l I pause and ask "Ready t o proceed?" before p r i n t i n g expansion announcements?

Do you want t h e o p t i o n of t y p l n g random characters t o s top ne so you can e d i t t h e goals

S h a l l I s t o p and l e t you e d i t t h e goa ls l i s t i f I have t o unwind a major goa l?

What i s t h e nane o f the PROBLEM f i l e ?

(Y o r N) No.

l i s t ? (Y o r N) No.

C Y o r N) No.

SW1TCH-HOST:PORTA;SWITCH;KNOWLEDGE-BASES;BLOCKSPROB.

What is t h e name o f t h e PRODUCTIONS f i l e ?
SWITCH-HOST:PORTA;SWITCH;KNOULEDGE-BASES;BLOCKPRODS.

I n what f i l e a r e t h e scheduled events? NIL

What s h a l l I use f o r Equals ign? =
Verbose ou tpu t? ('f o r N) Yes.
DesperationIndex: (8, 1, 2, 3, o r 4) 8
How s h a l l I handle S k i p I t a l t e r n a t i v e s ? (S, N, A, Q, 1, 2, 3, o r 4) Never s k i p

PRODUCTIONS: BLOCKSUORLD

DEVISER DRTE: Thursday t h e seventeenth o f A p r i 1 , 1986; 3:11:0? p m

PROBLEM: BLOCKPROBLEM
..

I N I T I A L S I T URT I O N :
(CLEAR A)
(CLEAR B)
(CLEAR C)
(CLEAR D)
(ONTABLE A)
(ONTABLE B)
(ONTABLE C)
(ONTABLE D)

GOALS :
((WINDOU AT 8) (ON A C) (ON B R) (ON D 6))

*** Not u s i n g Fragments ***

NODES: N6 N5 N4 N3
BLANK NODES: N6 N5 N4
PHANTOM NODES: N3

Node N1 START t o NIL.

Node N2 STOP t o NIL.
Dura t ion : 8 . 0
Window: A f t e r 8.Q
Asser t ions : None.
S u b s t i t u t i o n s : None.

Node N3 PHANTOM t o (N2).
Dura t ion : 8.8

c-1

Window: A t 8.8
Assert ions: None.
Subs t i t u t i ons : None.

Node N6 BLANK t o (N3).
Durat ion: 8.8
Window: A f t e r 0.0
Assert i ons :

(ON A C) (N3)
Subs t i t u t i ons : None.

Node N5 BLANK t o (N3).
Durat ion: 0.8
Uindow: A f te r 8.8
Rssert ions:

(ON B A) (N3)
Subs t i t u t i ons : None.

Node N4 BLANK t o (N3).
Durat ion: 0.8
Uindow: A f t e r 8.8
Rssert ions:

(ON D 6) (N3)
Subs t i t u t i ons : None.

8 T IE- IN a l t e r n a t i v e s f o r node N6
Level : 1

1 EXPANSION a l t e r n a t i v e f o r node N6 Level : 2

Expanding node N6 w i t h STACK A C T I O N

...
Constra in ts :

Durat ion: 1.8
Window: A f te r 8.8
Assert ions:

(OR (%CONSTANT A) (*CONSTANT C))

(NOT (CLEAR C))
(NOT (HELD A))
(ON A C) (N3)
(CLEAR A)

B1 ank predecessors:
N7 Assert ion: (CLEAR C) (N6)
N8 Assert ion: (HELD A) (N6) ...

CLIENT INTERFERENCE over (NOT (CLEAR C)) i s cured.

CLIENT INTERFERENCE over (NOT (HELD A)) i s cured.
Upstrean node: N?, Node: N6

Upstrean node: N8, Node: N6

1 T I E - I N a l t e r n a t i v e f o r node N?
Level: 4

===> N? t i e d t o (CLEAR C) i n node N1

0 T I E - I N a l t e r n a t i v e s f o r node N8
Level : 5

Cons t ra in t s :
Diirat!m: 1.8
Window: Before 7.8
Asser t ions :

(NOT (ONTABLE A))
(NOT (CLEAR A))
(HELD A) (N6)

Blank predecessors:
N9 Asser t ion : (ONTABLE A) (N8)
N1O Asser t ion : (CLEAR A) (N8)

CLIENT INTERFERENCE over (NOT (ONTABLE A)) i s cured.

CLIENT INTERFERENCE over (NOT (CLEAR A)) i s cured.
Upst rean node: N9, Node: N8

Upstream node: N18, Node: N8

1 TIE-IN a l t e r n a t i v e f o r node N9
Leve l : 8

===> N9 t i e d t o (ONTABLE A) i n node N1

1 TIE-IN a l t e r n a t i v e f o r node N1B
Level : 9

===> N1O t i e d t o (CLEAR A) i n node N1

0 TIE-IN a l t e r n a t i v e s f o r node N5
Leuel : 10

1 EXPANSION a l t e r n a t i v e f o r node N5 Level: 11

Expanding node N5 w i t h STACK A C T I O N

---_---___--__-----1___I________________---~-

Cons t ra in t s :

Dura t ion : 1.8
Window: A f t e r 0.0
Asser t ions :

(OR (*CONSTANT B) (*CONSTANT A))

(NOT (CLEAR A))
(NOT (HELD 8))
(ON B A) (N3)
(CLEAR B)

Blank predecessors:
N 1 1 Asse r t i on : (CLEAR A) (N5)
N12 Asser t ion : (HELD B) (N5) ...

CLIENT INTERFERENCE over (NOT (CLEAR A)) i s cured.

CLIENT INTERFERENCE over (NOT (HELD B)) i s cured.
Upstream node: N11, Node: N5

Upstrean node: N12, Node: N5

CONFLICT DETECTED over (NOT (CLEAR A)) between N5 and Pi10

ORDERING N5 and N18

CHANGING PHANTOM NODE N1B T O BLANK

ERASING TIE-IN o f N18.

0 TIE-IN a l t e r n a t i v e s f o r node N1Q
Leve l : 1 4

2 EXPANSION a l t e r n a t i v e s f o r node N1B Level: 15

Expanding node N18 w i t h UNSTACK A C T I O N

-"----------"-_---"-_____I______________~"~"-

Constra in ts :
c-3

(OR (*CONSTANT ?UPPERBLOCK-1) (%CONSTANT A))
D u r a t i o n : 1 .B
Window: Between 1.B AND 6 . 6
Assert i ons :

(NOT (ON ?UPPERBLOCK-1 A))
(NOT (CLEAR ?UPPERBLOCK-1))
(CLEAR A) (N8)
(HELD ?UPPERBLOCK-1)

B l a n k p r e d e c e s s o r s :
N13 Assertion: (ON ?UPPERBLOCK-1 A) (N l Q)
N14 Assertion: (CLEAR ?UPPERBLOCK-1) (N l B) ...

CLIENT INTERFERENCE ouer (NOT (ON ?UPPERBLOCK-1 A)) i s c u r e d .

CLIENT INTERFERENCE ouer (NOT (CLEAR ?UPPERBLOCK-l)) i s cured.
U p s t r e a n node: N13, Node: N1B

U p s t r e a n node: N14, Node: N1B

1 T I E - I N a l t e r n a t i v e f o r node N13
Level : 1 7

INSTANTIATING (CLEAR ?UPPERBLOCK-1) o f node N14
w i th {?UPPERBLOCK-1 c B 1

INSTANTIATING (ON ?UPPERBLOCK-1 A) o f node N13
w i t h {?UPPERBLOCK-1 t B 1

INSTANTIATING (HELD ?UPPERBLOCK-1) o f node N1B
w i th {?UPPERBLOCK-1 t B 1

INSTANTIATING (NOT (CLEAR ?UPPERBLOCK-l)) o f node N1B
w i t h {?UPPERBLOCK-1 t B

INSTANTIATING (NOT (ON ?UPPERBLOCK-1 A)) o f node N1B

CLIENT INTERFERENCE ouer (NOT (CLEAR 8)) i s cured.

CLIENT INTERFERENCE over (NOT (ON B A)) i s cured.

w i t h {?UPPERBLOCK-1 t B 1

U p s t r e a n node: N14, Node: N1B

U p s t r e a n node: N13, Node: N1B

ABORTING ATTEMPT t o order N3 a n d N18

INCURABLE CLIENT INTERFERENCE i n v o l v i n g (NOT (ON B A))
U p s t r e a n node: N5, Node: N1B

ABORTING INSTANTIATION o f l i t e r a l s .
ABORTING T I E - I N o f N13 t o (ON B A) i n N5

NODE EXPANSION PROHIBITED f o r N13
L e v e l : 1 8

UNWINDING EXPANSION o f node N l Q ...
----------_--_-_I-------------_------------

E x p a n d i n g node N1B w i t h PUTDOWN ACTION
C o n s t r a i n t s :

D u r a t i o n : 1.8
Window: Between 1 . 0 AND 6 . 8
A s s e r t i o n s :

(*CONSTANT A)

(NOT (HELD A) 1
(ONTABLE A)
(CLEAR A) (N8)

B l a n k p r e d e c e s s o r s :
N15 A s s e r t i o n : (HELD A) (N1B)

c-4

r---r--------r-rrJr------------r-----~----~~"

I N F I N I T E LOOP i nvo lv ing (HELD A) Node: N15, D o w n s t r e a n node: N8
ABORTING EXPANSION o f N18.

UNWINDING ORDERING o f nodes N5 and N18

UNWINDING ERASURE o f t i e - i n o f N18 to N1

ORDERING N8 and N5

CONFLICT DETECTED over (NOT (CLEAR A)) be tween N5 and N6

ORDERING N5 and N6

CONFLICT DETECTED over (CLEAR A) between N11 and N8

ABORTING ATTEIIPT t o order N11 and N8

ORDERING N8 and N11

0 T I E - I N a l ternat ives f o r node N11
Level: 16

1 EXPANSION a l t e r n a t i v e f o r node N l l Level 17

E x p a n d i n g node N11 w i t h PUTDOWN ACTION

...
C o n s t r a i n t s :

D u r a t i o n : 1.8
Window: B e t u e e n 1.8 AND 6.8
Asser t ions:

(*CONSTANT A)

(NOT (HELD A))
(ONTABLE A)
(CLEAR A) (N5)

B l a n k predecessors:
N16 A s s e r t i o n : (HELD A I (N11) ...

CLIENT INTERFERENCE over (NOT (HELD A)) i s c u r e d .
U p s t r e a n node: N16, Node: N11

ABORTING ATTEMPT t o order N6 and N11

INCURABLE CLIENT INTERFERENCE i n v o l v i n g (NOT (HELD A))

RBORTING EXPANSION o f N11.
U p s t r e a n node: N8, Node: N11

UNWINDING ORDERING o f nodes N8 and N11

ABORTING ATTEMPT t o o rder N11 a n d N8

ORDERING N8 a n d N11

ABORTING ATTEMPT t o o rder N8 a n d N11

UNWINDING ORDERING of nodes N8 and N11

UNLlINDING ORDERING of nodes N5 a n d N6

ORDERING N6 and N5

CONFLICT DETECTED over (CLEAR A) b e t w e e n N 1 1 and N8

ABORTING ATTEMPT t o order N11 and N8

c-5

ORDERING N8 and N 1 1

1 T I E - I N a l t e r n a t i v e f o r node N 1 1
Level : 16

===> N11 t i e d t o (CLEAR A) i n node N6

8 T I E - I N a l t e r n a t i v e s f o r node N12
Level : 17

1 EXPANSION a l t e r n a t i v e fo r node N12 Level : 18

Expanding node N12 w i th PICKUP A C T I O N

_____-__-__-__--__-____________I________-----

Constraints:
Durat ion: 1 .B
Window: Before 7 . 8
Assert i ons :

(NOT (ONTABLE 6))
(NOT (CLEAR B))
(HELD B) (N5)

B1 ank predecessors :
N17 Assert ion: (ONTABLE B) (N12)
N18 Assert ion: (CLEAR B) (N12)

------___-__--_-______________1__1_1____-----

CLIENT INTERFERENCE over (NOT (ONTABLE B)) i s cured.

CLIENT INTERFERENCE over (NOT (CLEAR 6)) i s cured.
Upstream node: N17, Node: N12

Upstream node: N18, Node: N12

1 T I E - I N a l t e r n a t i v e f o r node N17
Leuel: 28

===> N17 t i e d t o (ONTABLE B) i n node N1

1 TIE-IN a l t e r n a t i v e f o r node N18
Level : 21

===> N18 t i e d t o (CLEAR B) i n node N 1

B T I E - I N a l t e r n a t i v e s f o r node N4
Level : 22

1 EXPANSION a l t e r n a t i v e f o r node N4 Level : 23

Expanding node N4 w i t h STACK A C T I O N

-----_-I_---_-__--”-_______________I____---~-

Constraints:

Durat ion: 1 . Q
Window: A f te r B.B
Assert i ons :

(OR (*CONSTANT D) (*CONSTANT 6))

(NOT (CLEAR 6))
(NOT (HELD D))
(ON D E) (N3)
(CLEAR D)

Blank predecessors:
N19 Assert ion: (CLEAR B) (N4)
N2B Assert ion: (HELD D) (N4)

-_---_-_-----__-_---__I_________________~~~--

CLIENT INTERFERENCE over (NOT (CLEAR B) 1 i s cured.

CLIENT INTERFERENCE over (NOT (HELD D)) i s cured.
Upstrean node: N19, Node: N4

Upstrean node: N20, Node: N4

CONFLICT DETECTED over (NOT (CLEAR B)) between Pi4 and N18

C - 6

ORDERING N4 and N18

CHANGING PHANTOH NODE N18 T O BLANK

ERASING T I E - I N o f N18.

8 T I E - I N a l t e r n a t i v e s f o r node N18
L e v e l : 26

2 EXPANSION a l t e r n a t i v e s f o r node N18 L e v e l : 27

E x p a n d i n g node N18 w i t h UNSTACK ACTION

---u--------------------------u~----”-----uu-

Constraints:

D u r a t i o n : 1 .8
U i n d o u : Be tween 1.8 AND 6.6
A s s e r t i o n s :

(OR (%CONSTANT ?UPPERBLOCK-2) (%CONSTANT 6))

(NOT (ON ?UPPERBLOCK-2 B))
(NOT (CLEAR ?UPPERBLOCK-2))
(CLEAR B) (N12)
(HELD ?UPPERBLOCK-2)

Blank predecessors:
N21 Assertion: (ON ?UPPERBLOCK-2 B) (N18)
N22 A s s e r t i o n : (CLEAR ?UPPERBLOCK-2) (N18)

---u--------------*-~----~-------*--------u--

CLIENT INTERFERENCE o v e r (NOT (ON ?UPPERBLOCK-2 B)) i s c u r e d .

CLIENT INTERFERENCE over (NOT (CLEAR ?UPPERBLOCK-2)) i s c u r e d .
U p s t r e a m node: N21, Node: N18

U p s t r e a n node: N22, Node: N18

1 T I E - I N a l t e r n a t i v e f o r node N21
L e v e l : 29

INSTANTIATING (CLEAR ?UPPERBLOCK-2) o f node N22
w i t h E?UPPERBLOCK-2 c D 3

INSTANTIATING (ON ?UPPERBLOCK-2 8) o f node N21
w i t h {?UPPERBLOCK-2 c D 3

INSTANTIATING (HELD ?UPPERBLOCK-2) o f node N18
w i t h {?UPPERBLOCK-2 c D 3

INSTANTIATING (NOT (CLEAR ?UPPERBLOCK-2)) o f node N18
w i t h {?UPPERBLOCK-2 c D 3

INSTANTIATING (NOT (ON ?UPPERBLOCK-2 B)) o f node N18

CLIENT INTERFERENCE o v e r (NOT (CLEAR D)) i s c u r e d .

CLIENT INTERFERENCE o v e r (NOT (ON D B)) i s c u r e d .

w i t h {?UPPERBLOCK-2 c D 3

U p s t r e a n node: N22, Node: N18

Ups t ream node: N21, Node: N18

ABORTING RTTEMPT t o o r d e r N3 a n d N18

INCURABLE CLIENT INTERFERENCE i n v o l v i n g (NOT (ON D 8))
U p s t r e a n node: N4, Node: N18

ABORTING INSTANTIATION o f l i t e r a l s .
ABORTING T I E - I N o f N21 t o (ON D B) i n N4

NODE EXPANSION PROHIBITED f o r N21
L e v e l : 38

UNWINDING EXPANSION o f node N18
c-7

Expanding node N18 w i t h PUTDOWN A C T I O N
Constra in ts :

Durat ion: 1.0
Window: Between 1.0 AND 6 . 8
Assertions:

(*CONSTANT B)

(NOT (HELD 6))
(ONTABLE B)
(CLEAR B) (N12)

81 ank predecessors:
N23 Assert ion: (HELD B) (N181

----_-*----_--I_----_l_____________l____-----

INFINITE LOOP i n v o l v i n g (HELD B) Node: N23, Downstream node: N12
ABORTING EXPANSION o f N18.

UNWINDING ORDERING o f nodes N4 and N18

UNWINDING ERASURE o f t i e - i n o f N18 t o N1

ORDERING N12 and N4

CONFLICT DETECTED over (NOT (CLEAR B)) between N4 and N5

ORDERING N4 and N5

CONFLICT DETECTED over (CLEAR 8) between N19 and N12

ABORTING ATTEMPT t o order N19 and N12

ORDERING N12 and N19

B TIE-IN a l t e r n a t i v e s f o r node N19
Level : 28

1 EXPANSION a l t e r n a t i v e f o r node N19 Level : 29

Expanding node N19 w i t h PUTDOWN A C T I O N

_----------__-----_______l___________l__-----

Constra in ts :

Durat ion: 1 .B
Mindow: Between 1.0 AND 6.0
Assert i ons :

(*CONSTANT B)

(NOT (HELD B))
(ONTABLE B)
(CLEAR B) (N4)

Blank predecessors:
N24 Assert ion: (HELD B) (N19)

_-----------“-------_____l_____________l-----

CLIENT INTERFERENCE over (NOT (HELD B)) i s cured.
Upstream node: N24, Node: N19

ABORTING ATTEMPT t o order N5 and N19

INCURABLE CLIENT INTERFERENCE i n v o l v i n g (NOT (HELD B))

A B O R T I N G EXPANSION o f N19.
Upstrean node: N12, Node: N19

UNWINDING ORDERING o f nodes N12 and N19

ABORTING ATTEMPT t o order N19 and N12

ORDERING N12 and N19
C-8

ABORTING ATTEMPT t o o rder N12 and N19

UNWINDING ORDERING o f nodes N12 and N19

UNWINDING ORDERING o f nodes N4 and N5

ORDERING N5 and N4

CONFLICT DETECTED over (CLEAR B) between N19 and N12

ABORTING ATTEMPT t o o rder N19 and N12

ORDERING N12 and N19

1 T I E - I N a l t e r n a t i v e f o r node N19
Level : 28

===> N19 t i e d t o (CLEAR B) i n node N5

0 T I E - I N a l t e r n a t i v e s f o r node N28
Level : 29

1 EXPANSION a l t e r n a t i u e f o r node N28 Level: 38

Expanding node N28 w i t h PICKUP ACTION

-__----__-__-_------*----------------------~-

Cons t ra in t s :
Durat ion: 1.8
Windou: Before 7.8
Asser t ions:

(NOT (ONTABLE D))
(NUT (CLEAR D))
(HELD D) (N4)

Blank predecessors:
N25 Asser t ion : (ONTABLE D) (N20)
N26 Asser t ion : (CLEAR D) (N20)

----_-_--_---_--__--________________I____-"~-

CLIENT INTERFERENCE over (NOT (ONTRBLE D)) i s cured

CLIENT INTERFERENCE over (NOT (CLEAR D)) i s cured.
Upstrean node: N25, Node: N20

Upstrean node: N26, Node: N28

1 TIE-IN a l t e r n a t i v e f o r node N25
Leve l : 32

===> N25 t i e d t o (ONTABLE D) i n node N1

1 TIE-IN a l t e r n a t i v e f o r node N26
Leve l : 33

===> N26 t i e d t o (CLEAR D) i n node N1
Save the p l a n on d i s k f o r Fragments? (Y o r N) No.

c-9

SOLUTION !

D e s p e r a t i o n I n d e x : 0

PLAN DURATION: 8.0

SEQUENCE OF EVENTS:

ST ART STOP I D ACTIVITY RELATED INFORMATION
(HH:MM:SS.S) ..

0.0 N20 PICKUP ?BLOCK t D
1.0 DURATION t 1.0

0.0 N12 PICKUP ?BLOCK t B
1.0 DURATION t 1.0

0.0 N8
1.0

1.0 N6
2.0

2.0 N5
3.0

3.0 N4
4.0

PICKUP ?BLOCK t A
DURATION t 1.0

STACK ?LOWERBLOCK t C
?UPPERBLOCK t A
DURATION t 1.8

STACK ?LOWERBLOCK t A
?UPPERBLOCK t B
DURATION t 1.0

STACK ?LOWERBLOCK t B
PUPPERBLOCK t D
DURATION t 1.0

..
P l o t the f lowchar t? (Y o r N) No.
P r i n t the f l o u c h a r t ? (Y o r N) No.
Save t h i s plan f o r replanning, and save p r e d i c t i o n s f o r the E x e c u t i o n

That 's t h e f i r s t p lan you've sawed on t h i s cycle.
T r y f o r a n o t h e r s o l u t i o n ? (Y o r N) No.
E n d i n g S e a r c h

R o n i t o r ? (Y o r N) Yes.

..

E r a s i n g S w i t c h ' s e n w i r o n n e n t used f o r l a s t planning run ... Done.
D e A l l o c a t i n g L i t e r a l T r a y s , Nodes, and P r o d u c t i o n s ... Done.

To which nachine, Sun Moon o r Venus, should p red ic t i ons be s e n t ?

P r i n t i n g o u t p r e d i c t i o n s :
SIMON SAYS (SEND HELD.PREDICTION :SEND '((HELD D) AT 1))
SIMON SAYS (SEND HELD.PREDICTION :SEND '((HELD 8) A T 1)) .
SIMON SAYS (SEND HELD.PREDICTION :SEND '((HELD A) AT 1))
SIMON SAYS (SEND CLEAR.PREDICTION :SEND '((CLEAR A) A T 2))
SIMON SAYS (SEND 0N.PREDICTION :SEND ' ((ON A C) AT 2))
SIMON SAYS (SEND CLEAR.PREDICTION :SEND '((CLEAR E) A T 3))
SIMON SAYS (SEND 0N.PREDICTION :SEND ' ((O N B A) AT 3))
SIMON SAYS (SEND 0N.PREDICTION :SEND ' ((O N D E) A T 4))
SIMON SAYS (SEND CLEAR.PREDICTION :SEND '((CLEAR A) A T 0))
SIMON SAYS (SEND CLEAR.PREDICTION :SEND '((CLEAR B) A T 8))
SIMON SAYS (SEND CLEAR.PREDICTION :SEND '((CLEAR C) A T 0))
SIMON SAYS (SEND CLEAR.PREDICTION :SEND '((CLEAR D) AT 8))
SIMON SAYS (SEND 0NTABLE.PREDICTION :SEND '((ONTABLE A) A T 0))
SIMON SAYS (SEND 0NTABLE.PREDICTION :SEND '((ONTABLE E) A T 0))
SIMON SAYS (SEND 0NTABLE.PREDICTION :SEND '((ONTABLE D) A T 0))

(S, M, U, o r anything else)

c-10

- > Rep1 an

What t ime does new p l a n ' s execut ion s t a r t ? 4

Reading i n i n t e r n a l rep resen ta t i on o f f lowchart o f se lected p l a n ... Done.
Any discrepancies? (Y o r N) No.
I've made a new goals l i s t t a k i n g i n t o account the o l d goals and t h e beginning

Edi t , Forget it, P r i n t , Quit, o r T rus t ne? (E, F, P, Q, or T) E d i t
For each goal which the prev ious p l a n skipped, i f the E a r l i e s t S t a r t Tine of i t s
package hasn ' t passed o r n o t a l l cond i t i ons i n i t s package have been achieved or
skipped by NewTimeB, t h e goal appears e x p l i c i t l y , embedded i n "(*Skipped * I "
advice, i n t h e RerunGoalsList; so you can t e l l which o f t he e x p l i c i t r e r u n goals
were skipped, and d e l e t e them i f you choose. When you leave the ed i to r , I w i l l
remove *Skipped advice from any such goals t h a t a re s t i l l there, and they w i l l
become as o rd ina ry goals. For a goal, skipped by the prev ious plan, such t h a t
t h e g o a l ' s package's EST HAS passed and a l l o f t he package's cond i t i ons HAVE
been achieved o r skipped by NewTimeB but no t l a s t e d f o r t he package's des i red
duration, t he goal (wi th *Skipped advice) appears i n the corresponding
RerunPhantonGoal. I f you leave it the re then i t and i t s *Skipped advice w i l l
su rv i ve t h e upcoming rep lanning run b u t i t u i l l s t i l l be skipped; i f you s t r i p
the *Skipped advice from around i t then DEVISER w i l l t r y t o achieve it; and o f
course i f you renove i t then i t u i l l be gone.
; At this point the RerunGoalsList was essentially a copy of the original goal list, consisting of one
; package with four goal predicates with window at 8. I added another package in the editor. The
; new package, ((WINDOW AT 6) (ONTABLE D)), comes before the existing goal package.
Please type " Y " (Y o r N) Yes.
I ' v e almost f i n i s h e d processing t h e o l d input and the o l d p l a n t o make new
input. R11 I have l e f t t o do i s t o s t i c k a s tatenent o f t h e f o r n
(Tinea 4) i n t o t h e new i n i t i a l state, and alphabetize the
product ions by name.

o f t h e prev ious plan.

Now here's a LISP BREAK t h a t ' s your l a s t chance t o change th ings before DEVISER
s t a r t s again. You may wish t o e d i t such var iab les as RerunGoalsList,
R e r u n I n i t i a l S t a t e L i s t , RerunProductionsList, and RerunScheduledEventsList.
(P r o d u c t i o n - f i l e dec la ra t i ons other than the Product ions themselves, such as
Types o r Consunables, have already been w r i t t e n t o f i l e

.)
Neu product ions f i l e SUN:>SWITCH>KNOWLEDGE-BASES>rerun2blockprods..2 i s now ready f o r

SUN:>SWITCH~KNOWLEDGE-B~SES~rerun2blockprods..2

DEVISER.

New problem f i l e SUN:>SWITCH>KNOWLEDGE-BRSES>rerun2blocksprob..2 i s ready f o r DEVISER.

Scrub2: Eras ing p r o p e r t i e s and object-language v a r i a b l e s i n
replanning-input-generator's environment ... Done.

Scrub3: Eras ing remainder o f o l d p l a n from replanning-input-generator's
environment ... Done.

Verbose output? (Y or N) Yes.
DesperationIndex: (8 , 1, 2, 3, o r 4) 8
How s h a l l I handle S k i p I t a l t e r n a t i v e s ? (S, N, A, 9, 1, 2, 3, or 4) Newer s k i p

PRODUCTIONS: BLOCKSWORLD

DEVISER DATE: Thursday the seventeenth o f A p r i l , 1986; 3:16:33 pr?

PROBLEM: BLOCKPROBLEM
..

IPIITIAL S I T U A T I O N :
(*PAST (ON B A))
(*PAST (ON R C))
(*PAST (NOT (HELD A)))

c-11

(*PAST (NOT (HELD B)
(*PAST (NOT (CLEAR A
(*PAST (NOT (CLEAR C
(%PAST (NOT (ONTABLE
(*PAST (NOT (ONTABLE
(*PAST (ONTABLE C))
(%PAST (NOT (ONTABLE
(CLEAR D)
(NOT (HELD D))
(NOT (CLEAR 6))
(ON D B)
(TIME0 4.0)

GOALS :
((WINDOW AT 6) (ONTABLE D))
((WINDOW EARLIESTIDEALLATEST 8 N I L 8) (ON A C) (ON B A) (ON D 8))

*** N o t u s i n g Fragments ***

NODES: N35 N34 N33 N32 N31 N38
BLANK NODES: N31 N35 N34 N33
PHANTOM NODES: N32 N38

Node N28 START t o N I L .

Node N29 STOP t o N I L .
D u r a t i o n : 0 .8
Window: A f t e r 8.0
Assert i ons: None.
S u b s t i t u t i o n s : None.

Node N32 PHANTOM t o (N29) .
Durat ion: 6.0
Window: A t 8.0
Assert ions: None.
S u b s t i t u t i o n s : None.

Node N38 PHANTOM t o (N29) .
D u r a t i o n : 0.0
Window: A t 6.0
A s s e r t i ons: None.
S u b s t i t u t i o n s : None.

Node N35 BLANK t o (N 3 2) .
D u r a t i o n : 0.8
Window: A f t e r 4.8
Asser t ions:

S u b s t i t u t i o n s : None.
(ON A C) (N32)

Node N34 BLANK t o - (N32) .
D u r a t i o n : 0.0
Window: A f t e r 4 .0
A s s e r t i o n s :

S u b s t i t u t i o n s : None.
(ON B A) (N32)

c-12

Node N33 BLANK t o (N32).
Durat ion: 8.8
i indout i i f t e r 4 . 8
Asser t ions:

(ON D B) (N32)
Subs t i t u t i ons : None.

Node N31 BLANK t o (N38).
Durat ion: 9.8
Window: A f t e r 4.0
Assert ions:

Subs t i t u t i ons : None.
(ONTABLE D) (N38)

B TIE-IN a l t e r n a t i v e s f o r node N31
Level : 1

1 EXPANSION a l t e r n a t i v e f o r node N31 Level: 2

Expanding node N31 w i t h PUTDOWN A C T I O N

_-_____-___-__--_---I___________________-----

Constra in ts :

Durat ion: 1.8
Window: A f t e r 4 . 8
Assert ions:

(NOT (HELD D))
(ONTABLE D) (N38)
(CLEAR D)

(*CONSTANT D)

Blank predecessors:
N36 Asser t ion: (HELD D) (N31) ...

CLIENT INTERFERENCE over (NOT (HELD D)) i s cured.
Upstrean node: N36, Node: N31

B TIE-IN a l t e r n a t i v e s f o r node N36
Level : 4

2 EXPANSION a l t e r n a t i v e s f o r node N36 Level: 5

Expanding node N36 w i t h UNSTACK A C T I O N

----1---------_1---1-------------------------

Const ra in ts :

Durat ion: 1.8
Window: Betueen 4 . 0 AND 5 . 0
Assert ions:

(OR (*CONSTANT D) (*CONSTANT ?LOWERBLOCK-l))

(NOT (ON D ?LOWERBLOCK-l))
(NOT (CLEAR D))
(CLEAR ?LOWERBLOCK-l)
(HELD D) (N31)

Blank predecessors:
N37 Asser t ion: (ON D ?LOUERBLOCK-l) (N36)
N38 Asser t ion: (CLEAR D) (N36) ...

CLIENT INTERFERENCE over (NOT (ON D ?LOWERBLOCK-l)) i s cured.

CLIENT INTERFERENCE over (NOT (CLEAR D)) i s cured.
Upstrean node: N37, Node: N36

Upstrean node: N38, Node: N36

1 TIE-IN a l t e r n a t i v e for node N37
Level : 7

INSTANTIRTING (ON D ?LOWERBLOCK-1) o f node N37

C - 1 3

wi th {?LOWERBLOCK-1 c B }

I N S T A N T I A T I N G (CLEAR ?LOWERBLOCK-1) of node N36
w i t h {?LOWERBLOCK-1 c B 1

I N S T A N T I A T I N G (NOT (ON D ?LOWERBLOCK-1)) o f node N36

CLIENT INTERFERENCE over (NOT (ON D 6)) i s cured.
w i t h {?LOWERBLOCK-1 c B 3

Upstream node: N37, Node: N36

INST ANT I A T I N G
(OR (%CONSTANT D)

(%CONSTANT ?LOWERBLOCK-1))
o f node N36 w i t h

{?LOWERBLOCK-1 t 6 1

===> N37 t i e d t o (ON D B) i n node N28

CONFLICT DETECTED over (NOT (ON D 6)) between N36 and N33

ORDERING N36 and N33

1 T I E - I N a l t e r n a t i v e f o r node N38
Leve l : 10

===> N38 t i e d t o (CLEAR D) i n node N28

1 T I E - I N a l t e r n a t i v e f o r node N3S
Leuel : 11

===> N3S t i e d t o (ON A C) i n node N28

1 TIE-IN a l t e r n a t i v e f o r node N34
Leve l : 12

===> N34 t i e d t o (ON B A) i n node N28

0 T I E - I N a l t e r n a t i v e s f o r node N33
Leve l : 13

1 EXPANSION a l t e r n a t i v e f o r node N33 Leve l : 1 4

Expanding node N33 w i t h STACK A C T I O N

--_-_--_----_--_“_______I_______________-----

Const ra in ts :

Dura t ion : 1.0
Window: Between 5.0 AND 8.0
Asser t ions:

(OR (*CONSTANT D) (*CONSTANT 6))

(NOT (CLEAR B) 1
(NOT (HELD’ D))
(ON D B) (N32)
(CLEAR D)

Blank predecessors:
N39 Asser t ion: (CLEAR B) (N33)
N48 Asser t ion: (HELD D) (N33)

-__--____---_---”_------~--~-~~----------~---

CLIENT INTERFERENCE over (NOT (CLEAR B)) i s cured.

CLIENT INTERFERENCE over (NOT (HELD D)) i s cured.
Upstream node: N39, Node: N33

Upstream node: N48, Node: N33

[SRISERING N 3 i and N33
CLIENT INTERFERENCE over (NOT (HELD D)) i s cured.

Upstream node: N36, Node: N33

C-14

CONFLICT DETECTED over (HELD D) between N4Q and N31

1 TIE-IN a l t e r n a t i v e f o r node N42
Leve l : 23

\ ===> N42 t i e d t o (CLEAR D) i n node N31
Save t h e p l a n on disk f o r Fragnents? (Y o r N) NO.

ABORTING ATTEHPT t o o rde r N40 and N31

ORDERING N31 and N40

1 TIE-IN a l t e r n a t i v e f o r node N39
Leve l : 17

===> N39 t i e d t o (CLEAR B) i n node N36

0 TIE-IN a l t e r n a t i v e s f o r node N40
Leve l : 1 8

2 EXPANSION a l t e r n a t i u e s f o r node N40 Level: 19

Expanding node N40 u i th PICKUP A C T I O N
Cons t ra in t s :
Dura t ion : 1.0
Windou: Between 6.0 AND 7.0
Asser t ions :

(NOT (ONTABLE D))
(NOT (CLEAR D))
(HELD D) (N33)

Blank predecessors:
N41 Asser t ion : (ONTABLE D) (N40)
N42 Asser t ion : (CLEAR D) (N40) ...

CLIENT INTERFERENCE over (NOT (ONTABLE D)) i s cured.
Upstream node: N41, Node: N40

ORDERING N30 and N40
CLIENT INTERFERENCE over (NOT (ONTABLE D)) i s cured.

CLIENT INTERFERENCE over (NOT (CLEAR 13)) i s cured.

CLIENT INTERFERENCE over (NOT (CLEAR D)) i s cured.

CLIENT INTERFERENCE over (NOT (CLEAR D)) i s cured.

Upstream node: N31, Node: N40

Upstrean node: N42, Node: N4Q

Upstrean node: N38, Node: N40

Upstrean node: N28, Node: N40

t

CONFLICT DETECTED over (CLEAR D) between N42 and N36

I ABORTING ATTEMPT t o o rde r N42 and N36

ORDERING N36 and N42

1 TIE-IN a l t e r n a t i v e f o r node N41
Level :. 22

C-15

SOLUTION!

Desperat ion Index: 0

PLAN DURATION: 4.0

SEQUENCE OF EVENTS:

5 . 0 N31 PUTDOWN ?BLOCK t D
6.0 DURATION t 1.0

6 . 0 N40 PICKUP ?BLOCK t D
7.0 DURATION t 1.0

7.0 N33 STACK ?LOWERBLOCK t B
8.0 ?UPPERBLOCK t D

DURATION t 1.0

..
P l o t t h e f lowchar t? (V o r N) No.
P r i n t t h e f lowchar t? (Y o r N) No.
Save t h i s p lan f o r replanning, and save p r e d i c t i o n s f o r t h e Execut ion

Monitor? (Y o r N) Yes.
Since I ' n saving t h i s candidate replan, I'll t r a s h t h e backup p l a n saved from t h e l a s t

p lanning r u n . . . Done.

That 's t h e f i r s t p l a n you've saved on t h i s cyc le .
Try f o r another so lu t i on? (Y o r N) No.
Ending Search ..
Erasing Switch's environment used f o r l a s t p lanning run ... Done.
DeAl locat ing L i tera lTrays, Nodes, and Product ions ... Done.

To which nachine, Sun Moon o r Venus, should p r e d i c t i o n s be sent?
(S, M, U, or anyth ing e lse)

P r i n t i ng ou t p r e d i c t i ons :
SIMON SAYS (SEND HELD.PREDICTION :SEND '((HELD D) A T 7
SIMON SAYS (SEND HELD.PREDICTION :SEND '((HELD D) A T 5

SIMON SAYS (SEND 0N.PREDICTION :SEND '((ON D B) AT 8.0
S IMON SAYS (SEND CLEAR.PREDICTION :SEND '((CLEAR D) AT
SIMON SAYS (SEND 0NTABLE.PREDICTION :SEND '((ONTABLE D
SIMON SAYS (SEND 0N.PREDICTION :SEND '((ON B A) AT 4.0
SIMON SAYS (SEND 0N.PREDICTION :SEND '((ON A C) AT 4.0
SIMON SAYS (SEND CLEAR.PREDICTION :SEND '((CLEAR D) A T

SIMON SAYS (SEND CLEAR~PREDICTION :SEND '((CLEAR 8) A T

SIMON SAYS (SEND 0N.PREDICTION :SEND '((ON D B) AT 4.0))
->Rep1 an

What t i n e does new p lan ' s execut ion s t a r t ? 8

Reading i n i n t e r n a l representa t ion o f f l owchar t of se lected p l a n ... Done.
Any discrepancies? (Y o r N) No.
I ' v e made a new goals l i s t t a k i n g i n t o account the o l d 9oal.s and t h e beginning

Edi t , Forget it, P r i n t , Quit, or Trust me? (E, F, P, Q, o r T I E d i t
o f t h e previous p lan.

C-16

For each goal which the previous p lan skipped, i f the E a r l i e s t S t a r t Time o f i t s
peckage h=sn't pessed s r fist a!! ccrnditiens i n i t s package have been achieved or
skipped by NewTineO, t h e goal appears e x p l i c i t l y , embedded i n "(*Skipped *I"
advice, i n t h e RerunGoalsList; so you can t e l l which o f t h e e x p l i c i t r e r u n goals
were skipped, and de le te then if you choose. When you leave the ed i to r , I w i l l
renove *:Skipped advice from any such goals tha t are s t i l l there, and they w i l l
becork as o rd ina ry goals. For a goal, skipped by the previous plan, such t h a t
t h e goa l ' s package's EST HAS passed and a l l o f t h e package's cond i t i ons HAVE
been achieved o r skipped by NewTimen b u t no t l a s t e d f o r t h e package's des i red
duration, t h e goal (w i t h *Skipped advice) appears i n the corresponding
RerunPhantonGoal. If you leave i t there then it and i t s *Skipped advice w i l l
s u r v i v e t h e upcoming rep lanning run b u t i t u i l l s t i l l be skipped; i f you s t r i p
t h e *Skipped advice from around i t then DEVISER w i l l t r y t o achieve it; and of
course I f you remove i t then i t w i l l be sone.
; At this point the RerunGoalsList was nil, since all of the existing goals had been achieved by exe-
; cution of the existing plan until time 8. In the editor, I added a new goal package,
; ((WINDOW AT 11) (ONTABLE A)).
Please type ' Y " (Y o r N) Yes.
I ' v e a l n o s t f i n i s h e d processing the o l d input and the o l d p l a n t o make new
inpu t . A l l I have l e f t t o do i s t o s t i c k a statement o f t h e form
(Tinea 8) i n t o t h e new i n i t i a l state, and alphabet ize the
product ions by nane.

..
PROBLEM: BLOCKPROBLEM

INITIAL SITUATION:
(*PAST (ON B A))
(*PAST (ON A C))
(*PAST (NOT (HELD A)))
(*PAST (NOT (HELD B)))
(*PAST (NOT (CLEAR A)))

Now here 's a L I S P BREAK t h a t ' s your l a s t chance t o change th ings before DEVISER
s t a r t s again. You may wish t o e d i t such var iab les as RerunGoalsList,
R e r u n I n i t i a l S t a t e L i s t , RerunProductionsList, and RerunScheduledEventsList.
(P r o d u c t i o n - f i l e dec la ra t i ons other than t h e Product ions themselves, such as
Types o r Consumables, have already been w r i t t e n t o f i l e

. I
SUN:>SWITCH>KNOWLEDGE-RASES>rerun3hlockprods..2

New product ions f i l e SUN:>SWITCH>KNOWLEDGE-BASES>rcrun3blockprods..2 i s now ready f o r
DEVISER.

New problem f i l e SUN:>SWITCH>KNOWLEDGE-BASES>rerun3blocksprob..2 i s ready f o r DEVISER.

Scrub2: Eras ing p r o p e r t i e s and object-language va r iab les i n
replanning-input-generator's environnent ... Done.

I
Scrub3: Eras ing remainder o f o l d p l a n f r o m replanning-input-generator's

environment ... Done.

I Verbose output? (Y o r N) No.
I DesperationIndex: (0 , 1, 2, 3, o r 4) 0

How s h a l l I handle S k i p I t a l t e r n a t i v e s ? (S, N, A, 8, 1, 2, 3, or 4) Never skip

PRODUCTIONS: BLOCKSWORLD

(2-17

(NOT (CLEAR 6))
(ON D B)
(TIME8 8.8)

GOALS :
((WINDOW AT 11) (ONTABLE A))

% * % Not us ing Fragnents ***

NODES: N47 N46
BLANK NODES: N47
PHANTOH NODES: N46

Node N44 START t o N I L .

Node N45 STOP t o NIL.
Dura t ion : 9.9
Window: A f t e r 11.9
Asser t ions: None.
S u b s t i t u t i o n s : None.

Node N46 PHANTOM t o (N45).
Dura t ion : 8.6
Window: A t 11.6
Asser t ions: None.
S u b s t i t u t i o n s : None.

Node N47 BLANK t o (N46).
Dura t ion : 9.9
Window: A f t e r 8.9
Assert4 ons:

S u b s t i t u t i o n s : None.
(ONTABLE A) (N46)

1 EXPANSION a l t e r n a t i v e f o r node N47 Leve l : 2

Expanding node N47 w i t h PUTDOWN A C T I O N

__----------_____---__l_______________l_-----

Const ra in ts :

Dura t ion : 1.8
Window: A f t e r 8.8
Asser t i ons :

(NOT (HELD A))
(ONTABLE A) (N46)
(CLEAR A)

(*CONSTANT A)

Blank predecessors:
N48 Asser t ion: (HELD A) (N47) ...

CLIENT INTERFERENCE over (NOT (HELD A)) i s cured.
Upstream node: N48, Node: N47

2 EXPANSION a l t e r n a t i v e s f o r node Pi48 Leve l : 5

Expanding node N48 w i t h UNSTACK A C T I O N

...
Const ra in ts :

(OR (*CONSTANT A) (*CONSTANT ?LOWERBLOCK-2))

C-18

Dura t ion : 1.8
!=!ind=u: Betueer! Q.G END 1E.E
Asser t ions :

(NOT (ON A ?LOWERBLOCK-2))
(NOT (CLEAR A))
(CLEAR ?LOWERBLOCK-2)
(HELD A) (N47)

Blank Predecessors:
N49 Asser t ion : (ON A ?LOWERBLOCK-2) (N48)
N58 Asser t ion : (CLEAR A) (N48)

CLIENT INTERFERENCE over (NOT (ON A ?LOWERBLOCK-2)) i s cured.

CLIENT INTERFERENCE over (NOT (CLEAR A)) i s cured.

CLIENT INTERFERENCE over (NOT (ON A C)) i s cured.

Upstrean node: N49, Node: N48

Upstrean node: N58, Node: N48

Upstrean node: N49, Node: N48

===> N49 t i e d t o (ON A C) i n node N44

2 EXPANSION a l t e r n a t i v e s f o r node N58 Level: 18

Expanding node N58 w i t h UNSTACK ACTION

----__---__-----_---___________________I-"---

Cons t ra in t s :

Durat ion: 1.Q
Windou: Between 8.0 AND 9.8
Asser t ions :

(OR (*CONSTANT ?UPPERBLOCK-3) (*CONSTANT A))

(NOT (ON ?UPPERBLOCK-3 R))
(NOT (CLEAR ?UPPERBLOCK-3))
(CLEAR A) (N48)
(HELD ?UPPERBLOCK-3)

Blank predecessors:
N51 Asser t ion : (ON ?UPPERBLOCK-3 A) (N58)
N52 Asser t ion : (CLEAR ?UPPERBLOCK-3) (N58) ...

CLIENT INTERFERENCE over (NOT (ON ?UPPERBLOCK-3 A)) i s cured.

CLIENT INTERFERENCE over (NOT (CLEAR ?UPPERBLOCK-3)) i s cured.

CLIENT INTERFERENCE over (NOT (CLEAR B)) i s cured.

CLIENT INTERFERENCE over (NOT (ON B A)) i s cured.

Upstream node: N51, Node: N5Q

Upstream node: N52, Node: N58

Upstream node: N52, Node: N56

Upstream node: N51, Node: N58

===> N51 t i e d t o (ON B A) i n node N44

2 EXPANSION a l t e r n a t i v e s f o r node N52 Level: 15

Expanding node N52 w i t h UNSTACK A C T I O N

----------------_---______I_____________-----

Cons t ra in t s :

Dura t ion : 1.8
Window: A t 8.0
Asser t ions :

(OR (*CONSTANT ?UPPERBLOCK-4) (*CONSTANT B))

(NOT (ON ?UPPERBLOCK-4 6))
(NOT (CLEAR ?UPPERBLOCK-4))
(CLEAR B) (N5Q)
(HELD ?UPPERBLOCK-4)

Blank predecessors:
N53 Asser t ion : (ON ?UPPERBLOCK-4 B) (N52)
N54 Asser t ion : (CLEAR ?UPPERBLOCK-4) (NS2) ...

ENCOUNTERED START-TIME VIOLATION of 1.0 f o r node N50

(2-19

ABORTING EXPANSION o f N52.

E x p a n d i n g node N52 w i t h PUTDOWN ACTION

-__-I__--------------------------------------

Constraints:

D u r a t i o n : 1.8
Window: A t 8.0
Assertions:

(*CONSTANT B)

(NOT (HELD B))
(ONTABLE B)
(CLEAR B) (N58)

B l a n k p r e d e c e s s o r s :
N55 Assertion: (HELD B) (N52)

___-I__--_____-__-_-__________I_________-----

ENCOUNTERED START-TIME VIOLATION o f 1.9 f o r node N58
ABORTING EXPANSION o f N52.

UNWINDING TYING o f N51 t o N44
Level : 13

I N F I N I T E LOOP i n v o l v i n g (HELD A) Node: NS6, D o w n s t r e a n node: N48
ABORTING EXPANSION o f NS8.

UNWINDING TYING o f N49 t o N44
Level : 8

I N F I N I T E LOOP i n v o l v i n g (ONTABLE A) Node: N57, Downstrean node: N47
ABORTING EXPANSION o f N48.

c-20

I
I Erasing Switch's environnent used f o r last planning run ... Done.
, DeAllocating LiteralTrays, Nodes, and Productions ... Done.

No plans were saved on this replanning run, but I still remember the selected
plan from the previous run. Shall I Quit o r Stick with the previous plan?

CGl o r S; I'll wait] Stick with previous plan
To which nachine, Sun Moon o r Venus, should predictions be sent?

Printing out predictions:
SIMON SAYS (SEND HELD.PREDICTION :SEND '((HELD D) AT 7 . 8))
SIMON SAYS (SEND HELD.PREDICTION :SEND '((HELD D) AT 5.8))
SIMON SAYS (SEND CLEAR.PREDICTION :SEND '((CLEAR B) AT 5 . 8))
SIMON SAYS (SEND 0N.PREDICTION :SEND '((ON D B) AT 8 . 0))
SIMON SAYS (SEND CLEAR.PREDICTION :SEND '((CLEAR Dl AT 6.8))
SIMON SAYS (SEND 0NTRBLE.PREDICTION :SEND '((ONTABLE D) AT 6.0))
SIMON SAYS (SEND 0N.PREDICTION :SEND '((ON B A) AT 4 . 8))
SIMON SAYS (SEND 0N.PREDICTION :SEND '((ON A C) AT 4.8))
SIMON SAYS (SEND CLERR.PREDICTION :SEND '((CLEAR D) AT 4 . 8))
SIMON SAYS (SEND 0N.PREDICTION :SEND '((ON D B) AT 4.0))
->Rep 1 an

What tine does new plan's execution start? 12

Reading in internal representation of flouchart of selected plan ... Done.
Any discrepancies? (Y or N) No.
I've made a neu goals list taking into account the old goals and the beginning

Edit, Forget it, Print, Quit, or Trust me? (E, F, P, Q, o r TI Edit
For each goal which the previous plan skipped, if the Earliest Start Time of its
package hasn't passed or not all conditions in its package have been achieved or
skipped by NeuTine8, the goal appears explicitly, embedded in "(*Skipped *) "
advice, in the RerunGoalsList; so you can tell which of the explicit rerun goals
were skipped, and delete then if you choose. When you leave the editor, I will
remove *Skipped advice from any such goals that are still there, and they will
become as ordinary goals. For a goal, skipped by the previous plan, such that
the goal's package's EST HAS passed and all of the package's conditions HAVE
been achieved o r skipped by NewTime0 but not lasted f o r the package's desired
duration, the goal (with *Skipped advice) appears in the corresponding
RerunPhantonGoal. If you leave it there then it and its *Skipped advice will
survive the upcoming replanning run but it will still be skipped; if you strip
the *Skipped advice from around it then DEVISER will try to achieve it; and of'

; The planner could not find a solution for the goal package I added the last time, because there
; was not enough time between the start time, 8, and the goal window time, 11, to unstack tlzc
; stack of blocks on top of A, unstack A, and put A down on the table. RerunGoalsList was nil at
; this point since the last saved plan showed all of its goals achieved by time 12, the start time of
; the upcoming replanned plan. I added a new goal package, ((ONTABLE A)) with default win-

Please type " Y " (Y o r N) No.
I asked you nicely to type " Y " ; awful things will happen if you type I 'N" .

This is your last warning; type " Y " o r else1 (Y o r N) Yes.
I've almost finished processing the old input and the old plan to make new
input. A l l I have left to do is to stick a statement of the form
(Tine0 12) into the new initial state, and alphabetize the
productions by name.

(S, M, V, o r anything else)

of the previous plan.

I

1
I course if you renowe it then it will be gone.

I

I
I ; dow "anytime", in the editor.

Now please type " Y " (Y o r N) No.

c-21

Now here’s a LISP BREAK that’s your last chance to change things before DEVISER
starts again. You may wish to edit such variables as RerunGoalsList,
RerunInitialStateList, RerunProductionsList, and RerunScheduledEventsList.
(Production-file declarations other than the Productions themselves, such as
Types or Consunables, have already been written to file

. I
SUN:>SWITCH>KNOWLEDGE-BASES>rerun3blockprods..3

New productions file SUN:~SWITCH>KNOWLEDGE-BASES~rerun3blockprods..3 is now ready f o r
DEVISER.

New problem file SUN:>SWITCH>KNOWLEDGE-BRSES>rerun3blocksprob..3 is ready f o r DEVISER.

Scrub2: Erasing properties and object-language variables in
replanning-input-generator’s environment ... Done.

Scrub3: Erasing remainder of old plan from replanning-input-generator’s
environnent ... Done.

Verbose output? (‘f or N) No.
DcsperationIndex: (0 , 1, 2, 3, or 4) 0
How shall I handle SkipIt alternatives? (S, N, A, 0, 1, 2, 3, o r 4) Never skip

PRODUCTIONS: BLOCKSWORLD

DEVISER DATE: Thursday the seventeenth o f April, 1986; 3:24:89 pn

PROBLEM: BLOCKPROBLEM
..

INITIAL SITUATION:
(*PAST (ON B A))
(*PAST (ON A C))
(*PAST (NOT (HELD A)))
(*PAST (NOT (HELD B)))
(*PAST (NOT (CLEAR A)))
(*PAST (NOT (CLEAR C)))
(%PAST (NOT (ONTABLE A)))
(*PAST (NOT (ONTABLE 6)))
(*PAST (ONTABLE C))
(*PAST (NOT (ONTABLE D)))
(*PAST (CLEAR D))
(*PAST (NOT (HELD D)))
(*PAST (NOT (CLEAR 8)))
(*PAST (ON D 6))

. (TIME0 12.8)

GOALS :
((ONTABLE A))

*** Not using Fragments ***

NODES: N63 N62
BLANK NODES: N63
PHANTOM NODES: N62

Node N60 START to NIL.

Node N61 STOP to NIL.
Duration: 0.0
Window: After 12.0

c-22

Asser t ions : None.
Schat! t u t i ans : None ~

Node N62 PHANTOM t o (N61).
Dura t ion : 0.0
Window: A f t e r 12.8
Asser t ions : None.
S u b s t i t u t i o n s : None.

Node N63 BLANK t o (N62).
Dura t ion : 8.0
Window: A f t e r 12.8
Asser t ions :

S u b s t i t u t i o n s : None.
(ONTABLE A) (N62)

1 EXPANSION a l t e r n a t i v e f o r node N63 Level : 2

Expanding node N63 w i t h PUTDOWN A C T I O N
Cons t ra in t s :

(%CONSTANT A)
Dura t ion : 1.8
Llindow: A f t e r 12.8
Asser t ions :

(NOT (HELD A))
(ONTABLE A) (N62)
(CLEAR A)

Blank predecessors:
N64 Asser t ion : (HELD A) (N63) ...

CLIENT INTERFERENCE over (NOT (HELD A)) i s cured.
Upstream node: N64, Node: N63

Cons t ra in t s :

Dura t ion : 1.8
Window: A f t e r 12.8
Asser t ions :

(OR (*CONSTANT A) (*CONS

(NOT (ON A ?LOWERBLOCK-3
(NOT (CLEAR A))
(CLEAR ?LOWERBLOCK-3)
(HELD A) (N63)

Blank predecessors:

ANT ?LOWERBLOCK-3))

N65 Asser t ion : (ON A ?LOWERBLOCK-3) (N64)
N66 Asser t ion : (CLEAR A) (N64)

_-___-_--_---___--_-___I________________-----

CLIENT INTERFERENCE over (NOT (ON A ?LOWERBLOCK-3)) i s cured.

CLIENT INTERFERENCE over (NOT (CLEAR A)) i s cured.

CLIENT INTERFERENCE ouer (NOT (ON A C)) i s cured.

Upstream node: N65, Node: N64

Upstream node: N66, Node: N64

Upstrean node: N65, Node: N64

===> N65 t i e d t o (ON A C) i n node N68

Const ra in ts :

Dura t ion : 1.0
Window: A f t e r 12.0
Asser t ions:

(OR (*CONSTANT ?UPPERBLOCK-S) (*CONSTANT A))

(NOT (ON ?UPPERBLOCK-5 A))
(NOT (CLEAR ?UPPERBLOCK-S))
(CLEAR A) (N64)
(HELD ?UPPERBLOCK-S)

Blank predecessors:
N67 Asser t ion: (ON ?UPPERBLOCK-5 A) (N66)
N68 Asser t ion: (CLEAR ?UPPERBLOCK-5) (N66)

---c---

CLIENT INTERFERENCE over (NOT (ON ?UPPERBLOCK-5 A)) i s cured.

CLIENT INTERFERENCE over (NOT (CLEAR ?UPPERBLOCK-S)) i s cured.

CLIENT INTERFERENCE over (NOT (CLEAR 6)) i s cured.

CLIENT INTERFERENCE over (NOT (ON B A)) i s cured.

Upstrean node: N67, Node: N66

Upstrean node: N68, Node: N66

Upstrean node: N68, Node: N66

Upstrean node: N67, Node: N66

===> N67 t i e d t o (ON B A) i n node N68

2 EXPANSION a l t e r n a t i v e s f o r node N68 Leve l : 15

Expanding node N68 u i t h UNSTACK A C T I O N

...
Const ra in ts :

Dura t ion : 1.0
Window: A f t e r 12.0
Asser t ions:

(OR (*CONSTANT ?UPPERBLOCK-6) (*CONSTANT B))

(NOT (ON ?UPPERBLOCK-6 B))
(NOT (CLEAR ?UPPERBLOCK-6))
(CLEAR 6) (N66)
(HELD ?UPPERBLOCK-6)

Blank predecessors:
N69 Asser t ion: (ON ?UPPERBLOCK-6 6) (N68)
N70 Asser t ion : (CLEAR ?UPPERBLOCK-6) (N68)

---_-----I--_---__--___________________I-----

CLIENT INTERFERENCE over (NOT (ON ?UPPERBLOCK-6 6)) is cured.

CLIENT INTERFERENCE over (NOT (CLEAR ?UPPERBLOCK-6)) i s cured.

CLIENT INTERFERENCE over (NOT (CLEAR D)) i s cured.

CLIENT INTERFERENCE over (NOT (ON D B)) i s cured.

Upstrean node: N69, Node: N68

Upstrean node: N70, Node: N68

Upstrean node: N70, Node: N68

Upstrean node: N69, Node: N68

===> N69 t i e d t o (ON D 6) i n node N68

===> N78 t i e d t o (CLEAR D) i n node N68
Save t h e p lan on d i s k f o r Fragments? (Y o r N) NO.

C - 2 4

SOLUTION!

Desperat ion Index: 0

PLAN DURATION: 4.0

SEQUENCE OF EVENTS:

13.0 N66 UNSTACK ?LOWERBLOCK A
14.0 ?UPPERBLOCK c B

DURATION c 1.0

14.0 N64 UNSTACK ?UPPERBLOCK t A
15.0 ?LOWERBLOCK t C

DURATION c 1.0

15.0 N63 PUTDOWN ?BLOCK t A
16.0 DURATION c 1.0

..
P l o t t h e f l owchar t? (V or N) No.
P r i n t t h e f l owchar t? (Y o r N) Yes.

NODES: N68 N66 N64 N63 N62
BLANK NODES:
PHANTOM NODES: N70 N69 N67 N65 N62

..

Node N60 START t o (N68).

Node N61 STOP t o NIL.
Durat ion: 0.0
Window: A f t e r 16.0
Asser t ions: None.
S u b s t i t u t i o n s : None.

Node N62 PHANTOM t o (N61).
Durat ion: 0.0
Window: A f t e r 16.0
Asser t ions: None.
S u b s t i t u t i o n s : None.

Node N63 PUTDOWN A C T I O N t o (N62).
Dura t ion : 1.0
Window: A f t e r 15.0
Asser t ions:

(NOT (HELD A))
(ONTABLE A) (N62)
(CLEAR A)

S u b s t i t u t i o n : ?BLOCK by A .

Node N64 UNSTACK A C T I O N t o (N63).
Dura t ion : 1.0
Window: A f t e r 14.0

C-25

Asser t i ons :
(NOT (ON A C))
(NOT (CLEAR A))
(CLEAR C)
(HELD A) (N63)

Subs t i t u t i ons :
?UPPERBLOCK by A.
?LOWERBLOCK by C.

Node N66 UNSTACK A C T I O N t o (N64).
Durat ion: 1.8
Window: A f te r 13.0
Assert ions:

I

(NOT (ON B A))
(NOT (CLEAR 8))
(CLEAR A) (N64)
(HELD 8)

Subs t i tu t ions :
?LOWERBLOCK by A.
?UPPERBLOCK by E .

Node N68 UNSTACK A C T I O N t o (N66).
Durat ion: 1.0
Window: A f te r 12.8
Assert ions:

(NOT (O N D B))
(NOT (CLEAR D))
(CLEAR B) (N66)
(HELD D)

Subst i t u t i ons :
?LOWERBLOCK by B.
?UPPERBLOCK by D.

Save t h i s p lan f o r replanning, and save p r e d i c t i o n s f o r t h e Execut ion

Since I ' n sawing th i s candidate replan, I'll t r a s h the backup p l a n sawed f r o m the l a s t
Monitor? ('f o r N) Yes.

p lann ing run . . Done.

That 's t h e f i r s t p l a n you've sawed on t h i s cyc le .

Ending Search
I T r y f o r another so lu t i on? (Y or N) No.

..

Eras ing Switch's environnent used f o r l a s t p lanning r u n ... Done.
DeAl loca t ing L i te ra lTrays , Nodes, and Product ions ... Done.

To wh ch machine, Sun Moon or Venus, S ~ G U : ~ p r s d i c t i a n s be sent7

P r i n t ng ou t p red ic t ions :
SIMON SAYS (SEND CLEAR.PREDICTION :SEND '((CLEAR 6) AT 13.0))
SIMON SAYS (SEND CLEAR.PREDICTION :SEND '((CLEAR A) AT 14.0))
SIMON SAYS (SEND HELD.PREDICTION :SEND '((HELD A) A T 15.0))
SIMON SAYS (SEND 0NTABLE.PREDICTION :SEND '((ONTABLE A) A T 16.0))
SIMON SAYS (SEND 0N.PREDICTION :SEND '((ON B A) A T 12.8))
SIMON SAYS (SEND 0N.PREDICTION :SEND '((ON A C) A T 12 .8))
SIMON SAYS (SEND CLEAR.PREDICTION :SEND '((CLEAR D) A T 12.01)
SIMON SAYS (SEND 0N.PREDICTION :SEND '((ON D B) A T 12.8))
->Rep1 an

(S, M, U, or anyth ing e lse)

What t i n e does new p l a n ' s execut ion s t a r t ? Q

Q u i t t i n g

C-26

Scrub2: Erasing properties and object-language variables in
repianning-input-generator's environment ... Done.

Dcfillocating HCOPYs of LiteralTrays, Nodes, and Productions in saved

NIL
(DRIBBLE-END)

plan(s) . . . Done.

C-27

1. Report No.
86-24

SWITCH User's Manual

2. Government Accession No. 3. Recipient's Catalog No.

Februarv 1. 1987
6. Performing Organization Code

4. Title and Subtitle 5. Report Date

J E T PROPULSION LABORATORY
C a l i f o r n i a I n s t i t u t e of Technology
4800 Oak Grove Drive
Pasadena, C a l i f o r n i a 91109

7. Author(s)

9. Performing Organization Name and Address

11. Contract or Grant No.

13. Type of Report and Period Covered

8. Performing Organization Report No.

IO. Work Unit No.

12. Sponsoring Agency Name and Address I JPL P u b l i c a t i o n

9 . Security Clasif. (of this report) 20. Security Clorsif. (of this page) 21. No. of Pages

Unclas s i f i ed Unclassif ied 14 0

14. Sponsoring Agency Code
NATIONAL AERONAUTICS AND SPACE ADMINISTRATION
Washington, D.C. 20546

22. Price

I

15. Supplementary Notes

16. Abstract

The planning program, SWITCH, and i t s surrounding changed-goal-replanning
program, Runaround, are descr ibed . The evolu t ion of SWITCH and Runaround from
a n earlier p lanner , DEVISER, i s recounted. SWITCH'S p lan r e p r e s e n t a t i o n , and
i ts process of bui lding a p l an by backward chaining wi th s t r ic t chronologica l
backtracking, are descr ibed. A guide f o r wr i t i ng knowledge base f i l e s is
provided, as are n a r r a t i v e guides f o r i n s t a l l i n g t h e program, running i t , and
i n t e r a c t i n g wi th i t while it i s running. Some u t i l i t y func t ions are
documented. For the sake of completeness, a n a r r a t i v e guide t o t h e
experimental discrepancy-replanning f e a t u r e i s provided.
knowledge base f i l e s f o r a blocksworld domain, and a DRIBBLE f i l e i l l u s t r a t i n g
t h e output from, and use r i n t e r a c t i o n with, t h e program i n t h a t domain.

Appendices con ta in

7. Key Words (Selected by Author(,))

Opera t ions Research
Systems Analys is

18. Distribution Statement

Uncla s s i f i ed -Unl imi t ed

1

JPL 0184 A 9 1 8 J

